Routing on a Surface

Lino Demasi

2010/05/13

Introduction

Definition. Given a collection of polygons, we can pair the edges and assign an orientation to each edge. This is called a $2-cell\ embedding$

To see it is a surface, we see that around any vertex there is an orientation of edges around it that will define our surface.

Definition. We can create a *dual graph* by putting a vertex in each polygon and half edges that join to other half edges from other polygons.

Definition. For a surface Σ , we define the Eucler Characteristic $ech(\Sigma) := V - E + F$

Theorem. There are two types of surfaces. Orientable or non-orintable.

- For an orientable surface of genus g and c cuffs, $ech(S_g^{(c)}) = 2 2g c$
- For non-orientable surfaces with g cross caps, c cuffs, we have $ech(N_g^{(c)} = 2 g c$.

Circuits

Given a circuit c on our surface, there are different types of cuts. Some will cut the surface into pieces, some will not.

Definition. A circuit is *contractioble* if one side is a dis.

Definition. For a 2-cell embed graph, two closed walks are *homotopic* if we can obtain one from the other by a series of facial exchanges or simplifications

Definition. A facial exchange is taking the symmetric difference of a walk with a face incident to the face

Definition. A *simplification* is taking a section of a walk that goes back on itself and removing it.

So a circuit is contractible iff it is homotopic to a trivial walk.

Lemma. A cycle is contractible iff after cutting along it, the surface Σ splits into two components, one of which has $ech(\Sigma) + 1$.

Question. Given Σ with Euler genus g, how many cycles that are pairwise non-homotopic and disjoint could there be?

Theorem. Suppose C_1, \ldots, C_k are non-contractible cycles, pairwise disjoint and non-homotopic on a surface $\Sigma = S_q$ or N_q (ie. no cuffs). Then:

$$k \le \left\{ \begin{array}{ll} g & (g \le 1) \\ 3g - 3 & (g \ge 2) \end{array} \right.$$

Proof. Suppose first that Σ is orientable. Cut along each C_i . We get some surface and each C_i gives rise to 2 cuffs. So we have $ech(\Sigma^{(2k)} = 2 - 2g)$. We have several components of our surface. If we add a charge of $\frac{1}{3}$ to each of our cuffs, we see that any component must have augmented weight that is non-positive. We get

$$2 - 2g = \sum_{i} ech(\Sigma_i) \le -\frac{2k}{3} \Rightarrow k \le 3g - 3$$

A similar argument works for the non-orintable case.

Definition. A k-system of cycles C_i, \ldots, C_1 is a set of cycles so that no two intersect more than k times.

Theorem. For every Σ and each k, there exists a constant $q = q(\Sigma, k)$ such that every k-system of pairwise non-homotopic cycles on Σ contains at most q members.

We see that we can apply this to routing on surfaces. If we have a large number of paths between 2 cuffs, then some number of them must be homotopic. This means we can treat the area they "live" as a disc. So we can basically think of working on things in the plane.

Question.

- 1. Find a maximal k-system of cycles, pariwise non-homotpic on the torus, for k = 0, 1, 2.
- 2. What about if k is large?
- 3. What about k = 2 on the double taurus?