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1 Motivation

If we can obtain H from G via vertex deletions, we say H ⊂, G. If we allow
edge deletions we say H ⊂ G. If we allow edge contractions we say H <M G
and say H is a minor of G. H is a proper minor of G if H <M G,H 6= G.

The topic for the course is finding a structural decomposition for G in
ForbH = {G|H 6<M G}.

5 good reasons to look at the structure theorem.

1. Polynomial time algorithm for H−minor testing if H ≤M G

2. Proof of Wagner’s Conjecture: In any infinite sequence of graphsG1, G2, . . .,
∃ i < j s.t. Gi <M Gj

3. Poly Alg for testing membership in minor closed families. F is a minor
closed class if G ∈ F,H <M G⇒ H ∈ F

4. Hadwiger’s Conjecture: Kt 6<M G⇒ χ(G) ≤ t− 1

5. k−DRP : give G, S = {s1, s2, . . . sk}, T = {t1, t2, . . . Tk}, S, T ∈ V (G),
do there exist disjoint paths P1, P2, . . . Pk such that Pi is from si to ti.

Menger’s theorem tells us that given 2 sets of size k then there exist k
disjoint paths from S to T if and only if there is not a k vertex cut that
separates S from T .
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Model ofH inG consists of a function im such that ∀ v ∈ V (H), im(v) is a
tree of G. ∀ uv ∈ E(H), im(uv) is an edge of G s.t. u 6= v ⇒ im(u)∩im(v) =
φ. im(uv) has an endpoint in im(u) and endpoint in im(v).

The minor operation is transitive. If F <M G and G <M H, then
F <M H. As are ”is a subdivision” and ”contains a subdivision”

Note that 1 and 2 together give us 3. Any minor closed family has a
finite list of obstructions, since if the list was infinte then by 2 one would be
a minor of another. Thus, since we have a poly time alg for each graph we
get a poly time algorithm for the whole class.

We will see later than an algorithm for 5 also gives us a minor for 1.
G is a subdivision of H if ∃ distinct cv ∈ v(G) for each v ∈ V (H). For

each edge uv ∈ H, ∃ a path Puv of G s.t. Puv has endpoints cu, cv. Puv and
Pwx intersect only at common endpoints. If G contains a subdivision of H
then H <M G. The opposite is not true.
∀ H∃ a finite set ZH s.t. H <M G if and only if G contains a subdivision

of some graph in ZH . ZH = {G s.t. there is a model of H in G s.t. no vertex
of im(v) which is not the endpoint if an edge image has degree 2}

ZH = {G|H <M G but G does not contain t a subdivision of some F 6= G
s.t. H <M F}

Claim. H <M G⇒ ∃ F ∈ ZH s.t. G contains a subdivision of F

Proof. By induction on |V (G)|.

This shows how 5 gives us 1, but bruce erased the board he just finished
writing, so I couldn’t copy it down.

Let H = K3,3 contract an edge. Then graphs without H have no K5 or
K3,3, and so H−free graphs must be planar.

If K5 6<M and is edge with this property, then either G is planar, G = W8,
or G has a clique cut set of size ≤ 3. Consider a counter example to Had-
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wiger’s Conjecture with t = 5 with V (G) minimized and E(G) maximized.
Then it must be of one of the three types and we get a contradiction.

Suppose you are given an instance G,S, T of k−DRP and a clique of size
2k in G. Then either we can link through the clique and win, or we have a
separating set of size at most 2k−1, so we can reduce the graph. Either way
we can reduce to graphs which do not contain a K2k minor.

Theorem. ∀ k if (G,S, T ) is an instance of k−DRP s.t. S ∪ T is attached
to a K8k+5 model then the desired paths exist.

What can we say if Kt 6<M G? K3 6<M G ⇐⇒ G is a forest. K5 6<M G
includes planar graphs.

2 2-DRP

Theorem. 2 − DRP : If (G, {s1, s2}, {t1, t2}) is an instance of 2 − DRP ,
S ∪ T is attached to a K5 minor of G′ iff the desired P1, P2 exist. We
construct G′ from G by adding edges between S and T , and a vertex x joined
to S ∪ T .

Definition. Z is attached to a Kt model (t ≥ |Z|) if for any set x with
|x| < 2, the unique component of G−X containing a vertex image intersects
Z.

Proof. We prove this in 2 directions.

⇐ Obvious

⇒ Consider a minimum counterexample. If G’ disconnected, consider just
the component with the vertices. If there is a 1-separation, everything
is on one side. If we have a 2-separation or 3-separation, we are again
not minimal.

Claim. G′ has no 4-cut X s.t. some component U of G−X is also disjoint
from S ∪ T unless either X = S ∪ T or ∃ a unique U and it has only one
vertex.

Proof of claim. Suppose there exists such an X and U .

Claim. If we construct the graph (X ∪ U)′, then the graph is planar.

Proof. This graph has no s′1− t′1 and s′2− t′2 path and bruce erased the board
too quickly again.

Claim. The graph obtained from G′ − U by replacing U with a 4-cycle on
(S ∪ T )′ plus a vertex u joined to all four vertices is planar.
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3 Planar Graphs

Lemma. The faces of every 2-connected planar drawing are cycles.

Lemma (Euler’s Formula). |V |+ |F | = |E|+ 2

Proof of both. By induction. Start with a cycle. We can either add an edge
or add a vertex with 2 paths to the graph. Both results will hold.

Theorem (Kuratowski’s Thm). G is planar iff G does not contain K5 and
K3,3 as a minor.

Proof. We prove each direction.

⇒
2|E| =

∑
f∈F |bd(f)| ≥ 3|F |

|F | ≤ 2
3
|E|

|V | ≥ 1
3
|E|+ 2

|E| ≤ 3V − 6

For G = K5, |V | = 5, |E| = 10.

For K3,3, all faces have length at least 4, so we get |E| ≤ 2|V |−4 above
and the result follows similarly.

⇐ Consider a minimal counterexample G that is not planar and contains
no K5 and K3,3 minor. It is clear that G is at least 2-connected. Sup-
pose we had a 2-cut. By adding an edge to the cut, we see that each
side is planar and we are done by induction. Thus G is 3-connected.

Suppose we have a 3-cut. Then it must be free of edges, otherwise we
can contract each side and get 2 planar minors. Consider a model of
K5 or K3,3 in a component plus a triangle on the cutset. The model
must use all edges in the triangle, otherwise the model would exist in G.
Further, each edge of the triangle is an edge image, not a vertex image,
since otherwise one would be redundant. Also, since the 3 vertices are
pairwise adjacent it must be a model of K5. But if we now contract the
second component, we see that our original graph had a K3,3. Thus, G
is in fact 4-connected.

Consider G contract xy for some edge xy. This is planar by minimality.
If we consider this embedding and delete the vertex formed by the edge
xy. We have a cycle that is a face. We examine how the nerighbours
of x and y behave on this cycle. There is a neighbour of x that is not
a neighbour of y, otherwise we have a K5 minor. Consider u which is
a neighbour of x and not y. Then take the longest path in the cycle
that contains no neighbour of y. This gives us a K3,3 minor.
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Theorem (Whitney’s Theorem). 3-connected graphs have unique planar em-
beddings.

Proof. Suppose C is not a face boundary. Then it is a separating cycle.
Suppose C is a face in some embedding. If there was a chord of the cycle,
then we would have a 2-separation at its endpoints. Thus, every face is
an induced cycle. Consider a component of G − C, then it is adjacent to
every vertex of C, otherwise we have a 2-separation. Suppose we have 2
components, then each is adjacent to 3 vertices of C, add a vertex inside the
face and we get a planar drawing of K3,3.

Theorem. For an instance (G,S, T ) of k −DRP s.t. S ∪ T is attached to
a near K4k model, then the desired Pis exist.

Definition. A near clique model for Z is a set of subgraphs F1 . . . Ft such
that for each Fi, it is connected, or every component intersects Z, and for
each pair of F s that is disjoint from Z they are joined by an edge.

X spearates Z withg Z ⊂ V, |Z| ≤ t from a Kt model if |X| < |Z| and
the unique component of G − X containing a vertex image is disjoint from
Z. It is strongly attached if the only cut set of size |X| is X.

Proof. If S ∪ T is strongly attached then we must have every vertex not in
S ∪ T in a vertex image. Further, we must have each vertex image being
singleton, and we are done.

Suppose we are not srongly attached. Suppose we have a cut of size 2k,
then we find paths from S ∪T to the cut and we remain a near clique model.

4 Routing in Planar Graphs

The k − DRT problem is an instance (G,X ⊂ V, |X| = k,∆1, . . . ,∆p a
partition of X), do there exist vertex disjoint trees Ti such that ∆i ∈ Ti?

Definition. We say ∆ is realizable in G if the desired trees exist. The trees
are called a realization

k−realizations (G,X), X ⊂ V (G), |X| = k, which partitions of X are
realizable in G?

There are 2 types of obstructions to not having the desired trees. Con-
nectivity problems and topological problems.
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Let crossesy = {i|∆i is not contained in a component of G − Y }. If we
have a Y such that | crossesy| > |Y | then ∆ is not realizeable. If we have
some subset of ∆ on a common face then if two of the is are interlaced there
are no paths.

Lemma. If X lies on the boundary of one face then ∆ is realizeable iff one
of the two above conditions fail.

Definition. A c-embedded k-Realization problemn is an instance of k-realization
such that G has a planar embedding with x contained in the boundary of
c faces. Alternatively, we could say that G is embedded in a c−punctured
plane Σ such that G ∩ bd(Σ) = X.

Definition. ∆ is realizable in Σ if ∃ disjoint trees of Σ : T1, . . . Tp s.t. δi ⊂ Ti.

Definition. A cuff is a component of the boundary of Σ.

Definition. An I-arc intersects G at only vertices and its endpouints are on
cuffs.

Definition. An O-arc intersects G at only vertices and its interior is disjoint
from cuffs.
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Lollipop Bicycle

Walnut

Butterfly

Linking I-arc

Good O-arc

puncture

arc sections

Definition. A schism is any of a lollipop, bicycle, walnut, butterfly, good
O-arc, linking I-arc, non-null-homotoipic looping I-arc

Theorem. ∀ c, k, ∃ f(G, k) s.t. f(G, x) is an instance of G−embedd k−
realizations s.t.
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1. Every schism J satisfies |J ∩ V (G)| ≥ f(x, k)

2. for every O-arc J surrounding a cuff C, |J ∩ V (G)| ≥ |X ∩ C|

3. for every non-null-homotopic looping I-arc J cutting off a cuff compo-
nent D, |int(J) ∩ V (G)| ≥ |D ∩X|.

then a partition of X is realizaeable in G iff ∆ is realizeable in Σ.

Definition. For an instance (G,X) of c-embedded k-realizations V is isol-
dated if there exist vertex disjoint cycles C1, . . . , C` of G bounding discs
D1, . . . , D` s.t. v ∈ D1 ⊂ D2 . . . ⊂ D` and D` intersects a cuff.

Corollary. ∀ (c, k)∃ g(c, k) s.t. if v is g(c, k) isolated, then ∆ is realizable
in G iff ∆ is realizeable in G− v.

Algorithm for solving c−embedded k−realizations. We induct on (c, k).
Base cases c = 1, c = 2 done later.

Lemma. In O(V 2) time we can find either a g(c, k) isolated vertex or a
schism J with length |J ∩ V (G) ≤ 8g(c, k) + 5. If we find a vertex, delete it.
If we find a schism, we cut along it to get at most 3 instances of c′, k′ with
c′ < c and k′ ≤ k + 16g(c, k) + 10.

Lemma. For all v we can either find cycles c1, . . . cl showing that v is isolated
or we can find a cycle of length ≤ 6`+ 2 or an I-arc J1 containing an O-arc
J2 surrounding a cuff s.t. |J1 ∪ J2 ∩ V (G)| ≤ 2`

Proof. Consider the face of G− v containing v and show you get one of the
listed things. Proceed by induction replacing v by some number of cycles
which we can contract to a vertex v.

5 Clique Pasting

Definition. A Subtree Decomposition for G : [T, {Sv|v ∈ V (G)}], T is a tree,
Sv is a subtree of T , uv ∈ E(G)⇒ Su ∩ Sv 6= φ.

This always exists, since we can consider the trivial 1 vertex tree.
∀ t ∈ V (t),W (t) = {v|t ∈ Sv}

Lemma. G has a subtree decomposition s.t. Wt is a clique ∀ t if and only if
§u ∩ Sv 6= phi G is chordal.

***Insert Homework problem about common intersection.
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Lemma. If G arises from G1, G2 from clique pasting and G1, G2 have tree
decompositions [T1, {s1v, v ∈ V (G1)}], [T2, {s2v, v ∈ V (G2)}]. S.t. ∀ t ∈
T1, G1[W

1
t ] ∈ F and ∀ t ∈ T2, G2[W

2
t ] ∈ F . Then G has a subtree de-

composition s.t. ∀ t, G[Wt] ∈ F .

Since there is a vertex where the clique covers in each tree, we can add
an edge between these two vertices and get a tree for G. And, in fact we can
do this for an arbitrary number of pastings on the same clique.

Lemma. G arises from the graphs in F via repeated clique pastings⇔ G has
a subtree deconposition s.t. ∀ t ∈ V (t), G[Wt] ∈ F and ∀ st ∈ E(t),Ws ∩Wt

is a clique.

Definition. F ∗ is the set of graphs that arise from F via repeated clique
pasting.

Lemma. G is a spanning subgraph of a graph in F ∗ ⇔ G has a subtree
decomposition such that ∀ t, G∗[Wt] the graph obtained from G[Wt] by ading
edges so that Ws ∩Wt is a clique forall st ∈ E(T ) is in F .

Proof. We look at different clique sizes.

• If G has no K1 minor then G = φ.

• If K2 6<m G then we arise from clique pasting on a single vertex. We
should have a tree decomposition where |Wt| = 1∀ t, F = {vertex}.

• If K3 6m G then we arise from clique pasting of vertices or edges.

• If K4 6<m G then if G is 3 connected, it’s a clique of size at most 3.

• If K4 6<m G then

⇒ either G has a cutset X of size at most 2, or G is a clique of size
≤ 3.

⇒ either G is a subgraph if a graph which arises from smaller graphs
with no K4 minor via clique pasting or G has a clique of size ≤ 3.

⇒ G has a tree decomposition wher each @t has at most 3 vertices.

⇒ G ius a subgraph of a graph which has a tree decomposition where
each Wt has |Wt| ≤ 3 and WS ∩Wt is a clique ∀ st ∈ E(t).
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Conjecture. ∀ t s.t. Kt 6<m G⇒ G has a tree decomposition s.t. ∀Ws, |Ws| ≤
f(t)

This conjecture is false.

1. Why is this false?

2. What is the right answer for K5 6<m G?

3. What is the right answer for G has a subtree decomposition such that
∀ s, |Ws| ≤ `?.

Definition. A bramble is a set of trees every two of which intersect or are
joined by an edge.

Definition. The order of a bramble is the minimum size of a set that hits
every tree in it.

Examples:

• Clique model.

• Row ∪ column of a grid.

Lemma. If G arises from G1, . . . G` via clique pasting then G has a bramble
of order t if and only if ∃ i s.t. Gi has a bramble of order t.

Proof. t > |C| or else c contains a Kt which is a bramble oof order t in G
and all Gi. Thus, C is not a hitting set for the bramble. So ∃ a bramble
element B s.t. B ∩ C = φ, and B ⊂ Gi − C for some i, ∀ bramble elements
T , V (T ) ∩G induces a connected graph.

G has a subtree decomposition such that |Ws| ≤ t∀ s⇒ G has no bramble
of order l + 1.

The conjecture is false because if we look at a t+ 1× t+ 1 grid, we have
no K5 minor, but the order of our bramble is t+ 1.

Theorem (Wagner’s Theorem). K5 6< MG⇒

• G is planar

• G is W8

• G has a cutset of size at most 2

• G has a cutset of size 3 whose deletion gives 3 components.
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Alternatively, we can state this as G is planar, G is W8, or G is a subgraph
of a graph that arises via clique pasting from smaller graphs with no K5

minor.
This is equivalent to G having a tree decomposition where adding edges

to make each Ws ∩Wt a clique means each bag is planar or L.

We now prove the base cases. Suppose c = 1. Recall this means that
our graph can be embedded in the plane with all vertices on a common face.
To check if a graph is embeddable this way, we add a vertex adjacent to the
S ∪ T and see if this graph is embeddable. Call this graph G′. We may
assume this is 2-connected. We will show that this is realizeable iff there is
no s1, s2, t1, t2 appearing in that cyclic order around the face.

Lemma. G′ is 1−realizeable iff there do not exist s1, s2, t1, t2 appearing in
that cyclic order around the face.

Proof. By an assignment problem, we either have such a crossing, a single
partition element, or two consecutive partition elements. By induction the
second 2 cases are realizeable. The first is not. This leads to an easy algo-
rithm to check realizability in the graph.

Lemma. For c = 2, ∆ is not realizeable in Σ iff we have either

• cross over one of the cuffs

• twisted triplet

1 2

3

1 2

3

• 2 pairs crossing a face, cutting off a 3rd pair.

1 2

3

2

3

1
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Proof. Suppose we have none of the bad things, then we have one of the
following things happening:

• There is a 1-element set.

• ∆ has only 1 element

• Every ∆ has its elements in one cuff

• Each ∆ has one element in each cuff

• We have a pair on the same cuff with another pair split.

1 2 2

1

The first, second and fifth are easy to reduce to the graph from the surface.
The third we have to be cafreful because if we try to induce, we might

have the graphs for the two separate cuffs intersecting. However, we note
that if there are ` sets on one face, we need only vertices of distance at most
` to do our routing. So, we have two cases. Either there is a short arc between
them, in which case we have a bicycle, cut along it, and can induct. Or, we
have enough vertices between them to make the paths.

For the fourth, we again have some work. First,we try to find k disjoint
paths between the cuffs. These exist iff there is no O−arc of size < k. If
there is such an arc, paths are not poissible, so assume there is not one. We
can apply Menger’s theorem as an algorithm to find all minimal cuts of size
= k. If for each consecutive pair of cuts there is a path of at most 8k2 + 5
vertices between them, we can cut along these and solve smaller problems.
If no such path exists in some pair, then we show that between these 2 rings,
all consecutive pairings are realizable.

It turns out that we must have a minor that is a large cylinder of internally
disjoint paths which we can use to route along.
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1
2

3

1

2
3

8k2 + 5

k + 1

Theorem. Second version of this this theorem. We will show this version
implies the other version.
∀ c, k, ∃ f(G, k) s.t. f(G, x) is an instance of G−embedd k− realizations

s.t.

1. Every schism J satisfies |J ∩ V (G)| ≥ f(x, k)

2. If J surrounds a cuff that J has length ≥ f(c, k).

3. for every non-null-homotopic looping I-arc J cutting off a cuff compo-
nent D, |int(J) ∩ V (G)| ≥ |D ∩X|.

then a partition of X is realizaeable in G iff ∆ is realizeable in Σ.
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Proof - first version ⇒ Corollary. Consider (G,X) and v satisfying the hy-
pothesis. For c = 1, our previous proof shows g(c, k) = k is sufficient. For
c = 2, we recall we had seceral reductions we did in the previous case.

• solo vertex needs g(c, k − 1) + 1

• Fated pair needs g(c, k − 1) + 1

• If we treat the cuffs separately we need g(c, k − 1) + k

• If we have a short linking I−arc we need g(c− 1, 5k) + 2k

• Checking if X is in the same component g(c, k) = 1

• Each pair is split on the cuffs needs either g(1, 16k2 + k+ 10) + 8k2 + 5
or 8k2+7 depending on whether we have a large ring, or all short rings.

For c ≥ 3, let h(c, k) = max
c′<c,k′≤k+2f(c,k)

g(c′, k′). Then g(c, k) = h(c, k) +

f(c, k). Consider (G,X) and v satisfying the hypotheses. Assume for a
contradiction ∃ a partition of X realizeable in G but not in G − v. This
means one of our three conditions fails in G− v.

Suppose the first is violated. We can cut along this schism to get some
new problem. There exists a realizaions of partitions of the elements in
the boundary of the new problem whose union gives a realization of ∆ in G.
When we cut, v is still a distance of h(c, k) from any cuff, and so by induction
the graph is realizeable in the smaller case and was thus in the original case.

Suppose we have the second or third case. We again split into subprob-
lems each of which is lexocographically smaller than the original, so we are
done.

Proof - version 2 ⇒ version 1. We will actually show that if we get f(c, k)
for version 2 ⇒ 3f(c, k) for version 1. Further, we will show a stronger
version of the first theorem, where we insist:

• Lollipops have length ≥ 2f(c, k)

• Good O−arcs have length ≥ 2f(c, k)

• Bicycles have length ≥ 3f(c, k).

• Butterflies have length ≥ 2f(c, k)

• Non-nullhomotopic looping I−arcs have length ≥ f(c, k)

• Linking I−arcs have length ≥ f(c, k)
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• Walnuts have length ≥ 2f(c, k)

Consider (G,X) satisfying the these new conditions but suppose for a
contradiction that ∃ a partition of ∆ which is realizable in Σ but not in G.
Then the second condition of the second theorem does not hold. This means
∃ an O−arc surrounding a cuff C of length ≤ f(c, k). Choose one such that
the complement of Σ−J surroounding C is maximized. By Menger’s threom,
we have disjoint paths from the cuff to the O−arc.

If we look at the lengths of schisms in the new instance, we see this
will satisfy the second theorem, and so by induction also satisfy the new
theorem.

Proof - Second version. We proceeed by lexographic induction on (c, k). We
show f(x, k) ≥ f(x′, k′) for c′ < c, k′ ≤ 5k.

Let (G,X) be an instance of c−embedded k−realization satisfying the
conditions of the theorem. Suppose for a constradiction that somne partition
∆ if X is realizable in Σ but not in G.

Let J be a shortest linking I−arc. We claim there is an realization of ∆
in Σ J in at most k vertices of G. Furthermore, none of these intersection
points is joined to an endpoint of J by a subarc of length ≤ 5k.

X ′ = X+ both copies of these intersection points. We have a realization
of a partition of Σ′ of X ′ in G′ which yields a partition of ∆. We need to
show that (G′, X ′) satisfies the conditions of the theorem. One place things
could go wrong is linking I−arc, but any new one has length at least half
as long as the one we cut, which is okay by induction. The other place is
a looping I−arc where both ends are on the new cuff. If we have a cuff on
each side of this, then we are done because the corresponding arcs in the old
problem are long enough. If we do not, we must check the third condition
and we see that this will still be satisfied unless the new arc links an existing
cuff to the linking I−arc.

In this case, things could go wrong. So we have to change to cut along a
bridge. A bridge is like a linking I − arc except we hit each of the two cuffs
twice.

New Section that’s actually old.

Definition. The width of a subtree decomposition is max{|Wt|−1, t ∈ V (T )}

Definition. The Tree Width of a graph G is the minimum width of a tree
decomposition of G.
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Theorem. TW (G) = BN(G)− 1
We will show this in 3 steps:

(A) TW (G) ≥ BN(G)− 1

(B) TW (G) ≤ 3BN(G) (Algorithmic)

(C) TW (G) ≤ BN(G)− 1

Let st be an edge of a subtree decomposition. Then if we delete this
edge, we have components on each side, and components that intersect both
vertices. We see that if there are components on each side then Ws ∪Wt is
a cut set in our original graph.

Similarly, if we delete a node of the tree, we see that any trees contained
completely in one of the subtrees will be seperated from trees in other com-
ponents when we delete Ws from the original graph.

For every bramble B of order ≥ 2k, every minimal hitting set H for B is
k−linked. (Ie. ∀ x ⊂ V, |X| ≤ k, ∃ a component U of G−X with H∩U > H

2

From this, we see that if a graph has BN(2k) then the graph is k−linked,
and if a graph is k−linked, we also have a bramble of order k.

Lemma. If H1, H2 are hitting sets for B then ∃ ord(B) vertex disjoint paths
from H1 to H2.

Proof. By menger’s theorem this is only not true if there is a small cut set.
But if there was such a cutset then the cutset would be a hitting set as well,
but it’s size is too small.

Proof of Thm. We prove each piece separately.

(A) We claim that for every bramble B and subtree decomp. [T, S], ∃ a
node t s.t. Wt is a hitting set for B.

If this was true, we can do the following: Choose B with ord(B) =
BN(G) and [T, S] of width TW (G). So:

TW (G) = width of [T, S] + 1} ≥ |Wt| ≥ ord(B) ≥ BN(G)

We will prove the claim in 2 ways:

1. Supposed ∃ B, [S, T ] for which the claim fails. This means ∀ st ∈
W (T ), Ws∩Wt is not a hitting set for B means either ∃ a bramble
element in Vs or ∃ a bramble element in Vt. Direct edges on tree
towards hitting sets, then a sink will give a hitting set.
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2. We need another claim. ∀ connected subgraphs C of G, SC =
{
⋃
v∈C

Sv} is connected. This is obviously true.

This tells us that ∃ t ∈
⋂
c∈B

Sc. And Wt is a hitting set for B.

(B) Let (∗) be he property G has no k+1−linked set. (∗)⇒ ∀ Z ⊂ V, |Z| ≤
2k + 1, G has a tree decomposition of width ≤ 3k s.t. ∀ st ∈ E(T ),
|Ws ∩ Wt| ≤ 2k + 1 and Z ⊂ Wr. BN(G) = k ⇒ (∗). We show
that we can find a tree deconposition s.t. ∀ t, |Wt| ≤ 3k + 1 and
∀ st, |Ws ∩Wt| ≤ 2k

Choose a root Wr and consider G−Wr with components Ui and

Obs. 1 Every subgrph H of H satisfies (∗).
Obs. 2 We split the graph into the components of G−Wr.

Obs. 3 Wr ∩Wti is vertices of Wr that have neighbours in Ui.

Obs. 4 ∀ Z ⊂ V, |Z| ≤ 2k we ca get such a tree decomposition with
Z ⊂ Wr.

Obs. 5 To prove the inductive statement it is enough to show that ∀ Z
with |Z| ≤ 2k we can find WsupsetZ with |W | ≤ 3k + 1 s.t.
for each component Ui of G − Wr|x ∈ W |x has a neighbour in
Ui}| ≤ 2k + 1 and ∃ a vertex vnot ∈ Ui and with no edgeto Ui.

We can assume G has at least 3k + 2 vertices and that |Z| =
2k + 1. So Z is not k + 1−linked, so ∃ X ⊆ V, |X| < k s.t. every
component of G − X contains ≤ k vertices of Z. W = XcupZ
works.

(C) We will prove that for any bramble B in G, exactly one of the following
holds:

1. B extends to a bramble of order θ

2. ∃ a subtree dec [T, S] s.t. for evert t either |Wt| < θ or Wt is not
a hitting set for B and t is a leaf.

We proceed by backwards induction on the number of elements in B.

Case 1 ∃ a hitting set for B with < θ elements. Then 1. holds.

Case 2 is not case 1. Let H be a small hitting set for B. For any Ci s.t.
Ci intersects or is joined by an edge to all C ∈ B either 1 or 2
holds for Ci ∪B.
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If it is 1, then it also holds for B and we are done. If it is 2 for all such
Ci then for every Ci we can find a tree decomposition of G[V (Ci)∪H]
s.t. ∀ t s.t. |Wt| < θ,Wt is a leaf and not a hitting set for B and ∃ a
leaf t s.t. Wt = Ht.

If ∃ b ∈ B s.t. Ci ∩ b = φ, no Ci → bedge.

If Ci∪B is a bramble ∃ a subtree decomp. of G satisfying 2 for Ci∪B,
we want to massage it. So ∃ a leaf t s.t. Wt is a hitting set for B and
does not intersect Ci. ∃ |H| v.d. paths {Pv|v ∈ H} from H to Wt (in
G − Ci). ∀v ∈ H let Qv be a path from Sv to ti set S ′v = Sv ∪ Qv for
v ∈ Ci set S ′v = Svi

We now show an algorithm which, given G of tree widh ≤ w and a set
Z ⊂ V with |Z| ≤ 2w + 2, finds a subtree decomp. [T, S] of G of width
≤ 3w + 3. s.t. Z ⊆ Wr for some node r.

(A) If |V | ≤ 3w + 3 use a one ndoe tree.

(B) Otherwise

1. choose Z ′ ⊇ Z with |Z ′| = 2w + 3

2. Find X ⊂ V, |X| ≤ w+1 s.t. ∀ components C of G−X, |C∩Z ′| ≤
w + 1.

3. Set W ′ = Z ′ ∪X
4. For each component U of G−W , set Zu = {x ∈ W |∃ y ∈ U, yx ∈
E(G)}

5. Recurse to find a tree decomposition [T u, {Su
v |v ∈ v(U) ∪ Zu}]

6. Paste these together

How many iterations do we carry out? How long does an iteration take?
n iterations, but too long for each iteration.

We can do better. If we instead have |Z| ≤ 3w + 3 and want to find a
subree decomp. of width ≤ 4w + 4. If we instead look for U ∩ Z ′ ≤ 2w + 2,
then we can split the graph into 2 ppieces instead of components. It’s like
we’re working on edges of the subtree instead of vertices.

This will run in O(n2) time
We could go one step further and double out constants. This will allow us

to split so that both vertices and edges are at most 2/3 in the components.
This will run in O(n log(n)) time.

Ideally, we would like to fund a tree decomposition [T, S] such that
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• for every maximal bramble B, ∃ a unique tB such that WtB is a hitting
set for B

• ∀ B1, B2,∃ an arc st of the path of TB1 to tB2 s.t. Ws ∩Wt separates a
hitting set for B from a hitting set for B2 and is a smallest such set.

• tB1 = tB2 iff one is ”contained” in the other.

Brambles as Biases

∀ brambles B of order k we have a bias fB : {x ⊆ V | |X| < k}, fB(X) = the
unique component of G−X containing an element of B.

At this point, I stopped taking good notes so that I could better pay
attention and understand the materiaol myself.

Definition. A tangle is a bramble where any 3 elements have an edge which
has each at one endpoint.

A bramble of order 3k gives a tangle of order k, so we don’t lose much.
Tree decompositions are equivalent to a set of laminar separations.
For a tangle T , a set Z is attached to T if ∃ Y ⊆ V, |Y | < |Z| s.t. (Y

separatews Z from a hitting set for the tangle ⇔ Z is disjoint from fT (Y )).
We say that a k × k grid is attached to T if the bramble crossesk is

indistinguishable from T , ord(T ) ≥ K.
Our goal is to show:

Theorem. ∀ k,∃ f(k) s.t. for any tangle T of order f(k) there is a k × k
grid minor attached to T .

Theorem. If G is a planar graph with a tangle of order 4k + 1 then is has
a k × k grid as a minor.

Proof. For any O−arc of length < 4k + 1, the tangle is inside J or outside
J . Take the smallest O−arc where the tangle is inside. |V (G) ∩ J | = 4k,
and we consider the vertices of this arc and see we have rk vertices around
a face, so by the assignment question, we have a k × k grid.

Theorem. If we have a tangle of order 202k5 then we have a k×k grid minor
attached to T . We will only show 20k4k+1

, since it’s easier.

Z is T−linked if |Z| ≤ ord(T ) and ∀ Y with |Y | < |Z|, Z intersects
FT (Y ), equivalently does not separate Z from a hitting set for T .

A model of the k × k grid is attached to T if ord(T ) ≥ k and ∀ Y with
|Y | < k,FT (Y ) is the unique component of G− Y containing the image of a
row and column.

19


