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Definition. H is an induced subgraph of G if H is a subgraph of G and if
u, v ∈ V (H) and u v in G then u v in H.

Definition. A graph is chordal if it contains no hole.

Definition. A hole is an induced cyle of length at least 4.

Definition. An interval graph is the intersection graph of a family of inter-
vals.

Definition. An interval graph is proper if no interval is a subset of another.

Definition. The Line Graph of G, L(G) is the intersection graph of the
edges of G.

Definition. A graph is perfect if χ(G) = w(G) for every induced subgraph.

How do we recognize perfect graphs? How do we construct all perfect
graphs? Which minimal graphs are not perfect?

Theorem. Strong Perfect Graph Conjecture: the obstructions for being per-
fect are odd holes and odd antiholes.

Theorem. Weak Perfect Graph Conjecture: the complement of a perfect
graph is perfect.

Graphs that are perfect include:

• Bipartite graphs

• Complements of bipartite graphs
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• Line graphs of bipartite graphs

• Complement of line graphs of bipartite graphs

• Chordal Graphs

• Split Graphs

• Comparability Graphs

• Complements of Comparability Graphs

Definition. A 1-join of G and H is when you take a vertex of G and a
vertex of H and join their neighbourhoods by a complete bipartite graph. A
2-join is similar but doing it twice to the same pair.

Definition. A Berge Graph is a graph with no odd hole and no odd antihole.

Definition. An even pair of vertices in a graph is a pair of vertices u, v such
that every induced uv path has even (edge) length.

Definition. A claw is K1,3. A graph is clawfree if it has no induced claw.

How can we construct all clawfree graphs? What graphs are clawfree?

• Linegraphs

• Icosahedron

• Schlafli graph

• Circular interval graphs

• Complements of triangle free graphs

Definition. The schlafli graph is taken by taking 3 disjoint copies of the line
graph of K3,3 and joining special 3 sets by special 6 cycles

Definition. A circular interval graph is a cycle where some intervals are
replaced by cliques.

Definition. A pyramid is a subdivision of K4 where one triangle is just a
triangle and at least 2 of the others are paths.

Lemma. If G is chordal and X is a minimal cutset, then X is a clique.
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Proof. Suppose there exists a cut that is not a clique. Each vertex of the cut
has a neighbour in each component of G−X. Consider 2 vertices u, v of the
cut that are not adjacent. Choose 2 components of G − X. A shortest uv
path in each component is induced. The union of two of these paths from
different components gives us a hole. This contradicts G being chordal.

Definition. A vertex v is simplicial if nbhd(v) forms a clique.

Lemma. Every non-empty chordal graph has a simplicial vertex

Lemma. If G is chordal and C is a clique, then there is a simplicial vertex
not in C.

Proof. By induction.

Let T be a tree and T1 to Tn be subtrees of T . Construct a graph with
v1, v2, . . . vn with vi vj if V (Ti ∩ Tj) 6= φ and i 6= j. G is the intersection
graph of the subtrees of trees.

Lemma. G is chordal iff it is a subtree intersection graph.

Proof. Suppose Intersection tree graph has a hole. We have T1 ∼ T2, T2 ∼
T3, T3 ∼ T4, T4 ∼ T1. Delete T2 ∩ (T1 ∪ T3). Then T1 and T4 are now
disconnected. So T3 must have a vertex that intersects T1.

For the other direction, we prove by induction. Let v be a simplicial vertex
of G. By induction, G−v is the intersection graph of subtrees T1, . . . Tn of T .
The neighbours of v are a clique and so they pairwise meet, and thus must
all intersect in a common vertex. Create a vertex adjacent to that vertex
and add it to all the proper trees and make Tv be that vertex.

include image LineGraphObstructions

Theorem. G is the line graph of a triangle free graph iff no induced subgraph
of G is the claw or the diamond.

Proof. One direction is obvious. For the other, let A1, . . . An be the maximal
cliques. If any two of these intersected in more than one place, we would
have a diamond as an induced subgraph, which is a contradiction. Further,
if any vertex were in more than 2 maximal cliques, we would have a claw.
So let H be the intersection graph of the maximal cliques of G. Then any
vertex of G corresponds to 1 or 2 vertrices of H. For any that corresponds
to a single vertex add a leaf vertex to the graph there. This has no triangles,
so we are done.

Theorem. For bipartite line graphs, we add odd holes.
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Theorem (Lekkerkerker and Boland). Minimal non-interval graphs are holes,
asteroidal triples

Definition. An asteroidal triple is a stable set of 3 vertices such that there
exists a path between any pair that is not adjacent to the third.

Theorem. Or, we have

• a claw with talons of length 2

• a path of length 5 plus a center, plus a leaf on the middle

• A path of length ≥ 2 plus a center, plus leaves on center and end of
path

• A path of length ≥ 2 plus 2 centers, plus a vertex to the 2 centers, plus
2 vertices each to one center and one path end

Definition. A circular arc graph is the intersection graph of arcs of a circle.

What graphs are minimal not circular arc graphs? Unknown.

Definition. A comperability graph is a graph defined on a poset, where u, v
are adjacent if u ≥ v or v ≥ u.

There are approximately 19 types of induced subgraph obstructions for
this.

Definition. A linear Interval Graph is a set of k vertices and we choose
subsets of consecutive vertices and put a clique on it.

Theorem. G is a Proper Interval Graph iff G is a Linear Interval Graph

Definition. A Circular Interval Graph is vertices on a circle

Theorem. G is a proper circular arc graph iff G is a circular interval graph.

Lemma (Gallai’s identities). For any graph G:

• min k, ∃ set of k vertices meeting all edges + mak k ∃ stable set of size
k = |V (G)|

• mink k, ∃ k edges covering all vertices + max k,∃ matching of size
k = |V (G)|.
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Proof - Weak Perfect Graph Theorem. We show that a graph H is perferct
iff α(H)ω(H) ≥ |V (H)|. The only if direction is obvious, so we show the if
direction. By induction, WMA every proper induced subgraph is perfect.

Suppose there exists a stable set that intersects all max cliques, then we
win by induction. So we assume there is no such stable set. Consider a
max stable se. If we delete a vertex of the stable set, the remaining graph is
colourable, so we get some stable sets. Do this over all vertices in the stable
set. And take the collection of all these stable sets. Each vertex occurs in
α(G) of these sets, and for each such set there is a maximal clique that vertex
does not meet.

We woud like to show that every Berge graph can be built starting from
known classes of perfect graphs combined by some set of operations that
maintain being perfect. As basic graphs, we need:

• bipartite graphs

• complement of bipartite graphs

• line graphs of bipartite graphs

• complements of line graphs of biparite graphs

• double split graphs.

Definition. A double split graph is constructed by taking a clique and a
stable set with some edges between them. We twin each vertex, and join the
twins in the independent set and not join them in the clique. We then add
edges across by a matching with parity 0 if there was an edge, parity 1 if
there was no edge.

Definition. A 1-join is constructed by taking G,H, deleting a vertex from
each and forming a complete bipartite graph on their neighbourhood.

Claim. If G, H are perfect, then a 1 join is also perfect and is Berge.

Proof. We examine how any odd hole or antihole must interact with the
cutset and see it is Berge. To see it is perfect,

Maria

Conjecture (Erdos Hajnal Conjecture). For every H, there exists δ(H) > 0
such that if G does not have an induced subgraph isomorphic to H, then
either ω(G) ≥ |V (G)|δ(H) or α(G) ≥ |V (G)|δ(H).
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A graph has the EH property if there exists such a delta.

• for an edge, δ = 1

• for Kt, δ = 1
t−1

• 3-edge graphs give the 2 edge path. These graphs are disjoin unions of
cliques, so δ =

√
n.

Definition. Given graphs H1, H2 and v ∈ H1, then F is obtained by sub-
stituing H2 in H1 for v by deleting v and joining H2 to the neighbours of
v.

Theorem. If H1, H2 have EH property with δ1, δ2, then F has EH with δ =
δ1δ2

δ1+n1δ2
.

Proof. Let M = n
δ2

δ1+n1δ2 . Every M−subset of V (G) contains H1. So G must

have at least
(nm)

(n−n+1

M−n1
)

copeis of H1, and at most
(

n
n1−1

)
copies of H1−v. Some

copy of H1 − v extends to a copy of H1 in at least
(nm)

( n−n1M−n1)(
n

n1−1)
≥ n

δ1
δ1+δ2n1 .

Let W be the set of vertices extending this copy of H1− v to H1. By the
size of this set, it either has a big clique or big stable set, or H2.

Theorem (Erdos Hajnal). ∀H, if H 6⊂i G, then either α(G) ≥ ec(H)
√

log(n)

Theorem (Erdos, Hajnal, Pach). H 6⊂i then we have 2 sets of size δ(H)
such that they are complete or anticomplete to each other.

Theorem (Fox, Sudakov). We get either a clique or a pair of anticomplete
sets.

Definition. A set X is homogeneous if all vertices have the same set of
neighbours.

Definition. A graph G is α-narrow if for every function g s.t. ∀ perfect
induced subgraphs P of G,

∑
v∈P g(v) ≤ 1 we have

∑
v∈G g

α(v) ≤ 1.

Theorem (Chudnovsky, Safra). δ(The Bull) = 1/4.

Proof. To see this is best possible consider a triangle free graph with a stable
set of size

√
n. Substitute the compliment of this for all vertices of itself. It

will have n2 vertices, be bull free and have α, ω = 1/4.
If G is perfect then δ(G)ω(G) ≥ |V (G)|. So if G has a perfect induced

subgraph of size nε then it has ω or α at least nε/2.
So it suffices to show that every bull free graph has a perfect graph with

at least n
1
2 vertices.
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Theorem. If G is α-narrow then G has a perfect induced subgraph of size
≥ n

1
α .

Proof. Let P ne a perfect induced subgraph of G with |V (P )| is maximized

and equals k. Let g(v) = 1
k
. Now since G is α−narrow, so k ≥ n

1
α .

Theorem. Every bullfree graph is 2−narrow.

Definition. A bullfree graph is basic if it does not contain a hole of size ≥ 5
with a center and an anticenter

Theorem. If G is bullfree, then either G is basic or G has a homogenous
set .

Proof. We proceed by induction and consider 2 things.

1. Every basic graph is 2-narrow

We want to show that G is basic ⇒ ∀v either N = G|N(v) is perect or
M = G− (N(v) ∪ v) is perfect. It is enough to show that either N or
M is Berge. Consider the case where M has an antihole and N has a
hole.

Any vertex in the antihole has at most 2 non neighbours in the hole
and any vertex in the hole has at most 2 neighbours in the antihole,
otherwise we will have a bull or a center. The total number of edge
locations between the cycles is ab and we must have at least a(a− 2) +
b(b − 2) total possible adjacencies. For this to be true, one of a or b
must be at most 4.

Assume we have a G that is basic and minimal not 2−narrow. Let v0 ∈
V (G) be s.t. g(v0) is maximized. By above and taking compliments,
we can assume that N(v0) ∪ v0 is perfect. Define g′ : M → [0, 1],

G′(v) = g(v)
1−g(v0) . Since g is good, deduce that g′ is good on G|M .

By the minimality of G, G|M is 2−narrow. So we have
∑
g2(v) ≤∑

(1− g(v0))
2.

And
∑
g2(v) = g(v0)[g(v0) +

∑
v∈N

g(v)] + (1− g(v0))
2 ≤ 1.

2. G admits a homogeneous set decomposition.

We can unsubstitute the homogeneous set to get 2 seperate graphs.
Let g be a good function on G. We need to prove that

∑
g2(v) ≤ 1.

Let g1 on G1 (the homogenous set) = g(v)/(maxperf∈G1

∑
g(v). This

is a good function. g2(v) = g(v) except for the vertex which is G1,
which gets weither k = max from previous case. This is also a good
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function. We can combine the functions to get the sum of the squares
of the whole graph is at most 1.

Theorem (Hayward’s Theorem). If G has no P4 and no P̄4, then either G
is perfect or G is C5, or G admits a homogeneous set decomposition.

Corollary. Graphs with no P4 or P̄4 are 2−narrow.

Proof of Thm. Assume G is not perfet. Then G contains a 5-gon. All other
vertices are centers, anitcenters, or clones of vertices on the 5-gon. If there is
a clone, then the clones of that vertex will form a homogeneous set decom-
position.

So now we have all vertices are either centers or anticenters to the 5-gon
and the 5−gon is itself a homogeneous set.

Definition. A class C of graphs is χ−bounded if ∀ G ∈ C, ∀ H ⊆ G,
∃ f : N → N such that χ(H) ≤ f(ω(H))

In general H-free graphs are not χ bounded, since we can have graphs of
arbitrarlity large girth with large chromatic number. If there is a cycle in H,
we are screwed.

Conjecture. For every tree T , the class of T−free graphis is χ−bounded.

Conjecture. Forb(C5, C7, . . .) is χ−bounded

Conjecture. For every t, Forb(Ct, Ct+1, . . .) is χ−bounded.

Lemma. Conjecture 1 is true for paths with χ(G) ≤ (t/2)ω

Definition. Forb ∗ (F ) is the class of graphs with no subgraph isomorphic
to a subdivision of a member of F .

Theorem. For every tree T , Forb ∗ (T ) is χ−bounded.

Theorem. Forb ∗ (bull) is χ−bounded.

Conjecture. Forb ∗ (H) is χ−bounded.

Theorem. For every t, Forb(C5, C7, . . . , Ct, Ct+1, Ct+2, . . .)
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