
Computer Algebra

Lino Demasi

April 6, 2009

1 Introduction

• How do we represent long integers on a computer?

Write an integer a =
∑n−1

i=0 aiB
i where B is the base of the representa-

tion.

Maple versions < 9 used B = 104 on a 32 bit computer. a = 123456789
would be written as 1 · 108 + 2345 · 104 + 6789 and stored in an array
as POS4 6789 2345 1

Maple versions ≥ 9 use GMP package

n = 4 pointer

32bits 32bits 32bits 32bits

GMP is coded in assembly, whereas older versions are coded in C.

• How do we multiply long integers?

Let a =
∑m−1

i=0 aiB
i, b =

∑n−1
i=0 biB

i

Classical algorithm:

345
73

1035
24150
25185

Runs in O(nm)

Maple algorithm:

t < B2. Running time is < k1mn + k2n + k3(m + n) + k4 = O(mn).

• How fast can we multiply two n digit base B integers?

1

– Classical O(n2)

– Karatsuba (1962) O(n1.585)

– Schonhage Strassen (1978) FFT O(n log n log log n)

Karatsuba’s Algorithm

a = aiB
n/2 + a2

b = biB
n/2 + b2

a · b = a1b1B
n + (a1b2 + b1a2)B

n/2 + a2b2

Cleverly calculate a1b2 + b1a2 as (a1 + a2)(b1 + b2)− a1b1 − a2b2

Cleverly calculate a1b2 + b1a2 as (a1 − a2)(b2 − b1) + a1b1 + a2b2

• How fast can we compute gcd(a, b)?

– Euclid’s Algorithm (˜300 BC) O(n2)

– Stein’s Binary GCD Algorithm O(n2)

– Lehmer’s Algorithm O(n2)

– Schonhage Strassen O(log(n)M(n)) where M(n) is the cost of
multiplication.

• How fast can we divide c/b = a?

Classical long division is O(mn) V.P. Newton iteration is O(mn)

• Can we compute gcd(a,b) in O(M(n))?

Binary GCD Algorithm

Suppose a =
m−1∑
i=0

aiB
i and B = 2k

We can divide a by powers of 2 easily by shifting bits.

Knuth showed that if we take large a, random 0 < b < a then the
probability that a quotient of x occurs at a given step of the Euclidean
Algorithm islog2(1 + 1

x(x+2)
)

Lehmer’s Algorithm

Run Euclid’s Algorithm on the leading 64 bits of a, b. On average we
will get ˜20 quotients, q1, q2, · · · q20 correct.

Observation

0 1 ri−1 = ri

1 −qi+1 ri = ri+1

A20 · A19 · · ·A1
r0

r1
= r20

r21
(fractions are vectors)

2

2 Review

2.1 Rings, Fields, and Integral Domains

A non-zero element a in a ring R is a zero-divisor if there exists a non-zero
element b ∈ R s.t. a ·b = 0. Consider Z6 = {0, 1, 2, 3, 4, 5} the ring of integers
mod 6.

x 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Lemma. In a ring R a unit cannot be a zero divisor.

Proof. Suppose u ∈ R is a unit and a zero divisor.
Then ∃v 6= 0 : uv = 0,∃w : uw = 1. v = 1v = wuv = w0 = 0.

Corollary. A field has no zero-divisors

Definition. A commutative ring D is an integral domain if D has no zero
divisors.

Examples Z, fields, D[x]

Proof. Let a, b be non-zero polynomials in D[x]. a · b = an · bm ·xm+n + . . . 6=
0

Definition. Cancellation Law: Let a, b, c be non-zero elements of a ring R.
If ab = ac⇒ b = c then we say the cancellation law holds in R.

Lemma. In an integral domain D, the cancellation law holds.

Proof. Let a, b, c be non-zero elements in D s.t.

ab = ac
⇒ ab− ac = 0
⇒ a(b− c) = 0
⇒ (b− c) = 0
⇒ b = c

3

2.2 Divisibility and Factorization in Integral Domains

Let D be an integral domain. A non-zero element b ∈ D is a divisor of a ∈ D
if ∃q ∈ D st. a = bq = qb.

If b is a divisor of a, we write b|a. How do we simplify a
b

where a, b ∈ D?

Definition. Let a, b, c, d ∈ D. c is the greatest common divisor of a and b if

• c|a and c|b

• d|a and d|b⇒ d|c

Definition. Two elements a, b ∈ D are associates if a|b and b|a. We write
a ∼ b.

Lemma. Let a, b ∈ D. Then a ∼ b⇔ a = ub for some unit u ∈ D.

Proof. (⇒) a ∼ b ⇒ b = ac, a = bd for some c, d ∈ D. Combining we get
cd = 1, which means c, d are units.

(⇐) Since a = ub, we have b = au−1. These tell us that a|b and b|a, so
we are done.

Theorem. In an integral domain D the relation a ∼ b is an equivalence
relation on the non-zero elements of D.

• a ∼ a

• a ∼ b⇒ b ∼ a

• a ∼ b and b ∼ c⇒ a ∼ c

Definition. Let n : D\{0} → D be a function st. n(a) returns a “canonical”
or “standard” representative from the associate class with a in it.

We impose uniqueness on g = gcd(a, b) by returning n(g).

2.3 Unique Factorization Domains

Let R be a commutative ring and let p be a non-zero, non-unit of R.

Definition. p is a prime if p|ab⇒ p|a or p|b

Definition. p is irreducible if p = ab⇒ a or b is a unit.

Lemma. In an integral domain D, primes are irreducible

4

Proof. Suppose p = ab then p|ab so p|a or p|b. Assume p|a, so p = pcb ⇒
cb = 1. Thus b is a unit.

Definition. An integral domain D is a unique factorization domain (UFD)
if ∀a ∈ D s.t. a 6= 0 and a is not a unit

• a = c1 · c2 · · · cn for some irreducibles ci ∈ D

• if a = c1 · c2 · · · cn = d1 · d2 · · · dm where ci, dj are irreducibles, then
m = n and ci ∼ dj for some j.

Examples of integral domains which are not UFDs.

• D = Q[s, c]/(s2 + c2 − 1)

(1− c)(1 + c) = 1− c2 = s · s
These are both products of irreducibles and not associates.

Consider a = s + sc, b = s + sc + s2. s, 1 + c are common divisors of
a, b but neither is a greatest common divisor.

2.4 Euclidean Domain

Definition. An integral domain E is called a Euclidean Domain if there
∃v : E\{0} → N ∪ {0} such that

1. ∀a, b ∈ E\{0}v(a, b) ≥ v(a)

2. ∀a, b ∈ E, b 6= 0,∃q, r ∈ E s.t. a = bq + r and r = 0 or v(r) < v(b)

Definition. The function v is called the valuation or the Euclidean norm.

Examples of Euclidean Domains

• Z is a Euclidean Domain with v(a) = |a|

• F [x] for F a field with v(a) = deg(a).

• Gaussian Integers Z[i]

Theorem. Euclidean domains are UFDs.

Theorem. Let a, b ∈ E\{0}, where E is a Euclidean Domain, then ∃s, t ∈
E s.t. sa + tb = g where g = gcd(a, b).

5

r0, r1 ← a, b
s0, s1 ← 1, 0
to, t1 ← 0, 1
k ← 1
while rk 6= 0 do

qk+1 ← quotient of rk−1/rk

rk+1 ← rk−1 − qk+1rk

sk+1 ← sk−1 − qk+1sk

tk+1 ← tk−1 − qk+1tk
k ← k + 1

end while
n← k − 1
output rn, sn, tn

Claim: ska + tkb = rk for all k

Proof. By double induction on k.

k = 0 s0a + t0b = r0? 1a + 0b = a
k = 1 s1a + t1b = r1? 0a + 1b = b

For k ≥ 1, assume holds for k, k − 1. We will show true for k + 1.
By algorithm,

sk+1a + tk+1b = (sk−1 − qk+1sk)a + (tk−1 − qk−+tk)b
= (sk−1a + tk−1b)− qk+1(ska + tkb)
= rk−1 − qk+1rk

= rk+1

2.5 Computing inverses in Zm

Let a ∈ Zm with m > a ≥ 0. Applying the EEA we obtain sntn ∈ Zs.t.snm+
tna = rn.

If g > 1 then output a is not invertible. Otherwise tna = rn = 1(
mod m).

But tn can be negative. How big can tn be? |tn| < m/g.

2.6 Rational Number Reconstruction

Suppose n
d
∈ Q with gcd(n, d) = 1 and d > 0. Suppose m > 0 with

gcd(m, d) = 1. Suppose we have computer u = n
d

mod m and we want
to recover n

d
given u, m.

6

Apply EEA(m, u) to get skm + yku = rk for k = 0, 1, . . . , n + 1.
tku = rk(mod m)⇒ u = rk

tk

Lemma. [Wang, Guy, Davenport (1982)] If m > 2|n|d then n
d

= rk

tk
for some

k

Lemma. [Monagan (2004)] If m > (2|n|d)2 then if i satisfies |riti| ≤ |rktk|∀k
then n

d
= r1ti

In a Euclidean Domain E we have a function v : E\{0} → N ∪ {0} such
that:

1. ∀a, b ∈ E\{0}v(a, b) ≥ v(a)

2. ∀a, b ∈ E, b 6= 0,∃q, r ∈ E s.t. a = bq + r and r = 0 or v(r) < v(b)

Let u be a unit in E and let c, d ∈ E which are not zero and not units.

1. v(u) = v(1)∀ units u

2. v(c) > v(u)∀ non-units c

3. v(uc) = v(c)

4. v(cd) > v(c)

5. c|d and d|c⇒ v(c) = v(d)

6. v(c) < v(d)⇒ d 6 |c

Proof. (1)
v(u) = v(1u) ≥ v(1)
v(1) = v(uu−1) ≥ v(u)
⇒ v(u) = v(1)

Proof. (2) We can write 1 = cq + r. If r = 0 then c would be a unit. Thus
v(c) > v(r) = v(1r) ≥ v(1).

Definition. Let R be a ring. R[x] dentoes the set of univariate polynomials
in the variable x whose coefficients are in the ring R.

Let a = anx
n + an−1x

n−1 + · · ·+ a1x + a0 where an 6= 0.

Definition. The degree of a wrt x is n. deg(0) = −∞

7

Definition. The leading coefficient of a wrt x is an. Denoted lt(a).

Definition. The leading term of a wrt x is anx
n. Denoted lc(a).

Definition. The leading monomial of a wrt x is xn. Denoted lm(a).

In maple, degree(a), degree(a, x), lcoeff(a), lcoeff(a, x) do the expected
things.

lterm := proc(a,x)

lcoeff(a,x) * x^degree(a,x)

end;

lterm := proc(a,x) local c,m;

c:= lcoeff(a,x,’m’);

c*m;

end

Theorem. If R is an integral domain a, b non-zero polynomials in R[x] then

• deg(ab) = deg(a) + deg(b)

• lc(ab) = lc(a) · lc(b)

• lt(ab) = lt(a) · lt(b)

• lm(ab) = lm(a) · lm(b)

2.7 Divison in F [x], F a field

Theorem. Let F be a field. Let a, b ∈ F [x], b 6= 0. There exist unique
q, r ∈ F [x] s.t. a = bq + r with r = 0 or deg(r) < def(b).

Proof. (of uniqueness) Suppose we have that a = bq + r1 and a′ = bq +
r2 where q1, q2, r1, r2 ∈ F [x] and (r1 = 0 or deg(r1) < deg(b)) and (r2 =
0 or deg(r2) < deg(b))

0 = bq1 + r1 − (bq2 + r2) ⇒ r2 − r1 = b(q1 − q2)
⇒ b|(r2 − r1)
⇒ r2 = r1

0 = b(q1 − q2) ⇒ q1 − q2 = 0
⇒ q1 = q2

8

r:= 0;

q:= 0;

while deg(r) \geq deg(b) do

t := lt(r)/lt(b);

q:= q + t;

r := r - t*b;

end;

return q,r;

q:= quo(a,b,x);

r:= rem(a,b,x);

g:= gcd(a,b,x);

g:= gcd(a,b,x,’s’,’t’);

q:= Quo(a,b,x) mod p;

q:= Rem(a,b,x) mod p;

q:= Gcdex(a,b,x,’s’,’t’) mod p;

Theorem. Let a, b, c ∈ F [x], a, b 6= 0. Let g = gcd(a, b). If g|c then there
exist unique polynomials σ, τ ∈ F [x] s.t.

• σa + τb = c

• deg(σ) < deg(b
g
) = deg(b)− deg(g)

• If deg(c) < deg(ab
g
) then deg(τ) < deg(a

g
)

Proof. (of existence) From the EEA, ∃s, t ∈ F [x] s.t. sa + tb = g.
g|c⇒ c = gd⇒ dsa + dtb = c.
⇒ (ds)a

g
+ (dt) b

g
= c

g

ds = b
g
q + σ ⇒ (b

g
q + τ)a

g
+ (dt) b

g
= c

g

⇒ σ a
g

+ (dt + q a
g
) b

g
= c

g

⇒ σa + [dt + q a
g
]b = c

(of uniqueness) Suppose that σ1a + τ1b = c and σ2a + τ2b = c. Proof
follows as the previous uniqueness proof.

9

2.8 Multivariate Polynomials

Let R be a ring. R[x1, x2, . . . , xn] = {
t∑

i=1

aix
ei1
1 xe12

2 · · ·xein
n : ai ∈ R,Ai 6=

0, eij ∈ N ∪ 0} with addition and multiplication defined in the usual way is
a multivariate polynomial ring.

The vectors [ei1, ei2, . . . ein] are called exponent vectors.

Definition. The degree of a is
t

max
i=1

n∑
j=1

eij.

Two different ways of organizing terms:

• Pure lexocographical ordering - order wrt x1, then x2, etc.

• Grades lexocographical ordering - order by total degree, among each
degree order by pure.

Theorem. If R is an integral domain and a, b are non-zero polynomials in
R[x1, x2, . . . xn] then for either of the above orderings the properties of degrees,
leading coefficients, leading terms and leading monomials are true.

The ring R[x1, x2, . . . , xn is isomorphic to the ring R[x2, x3, . . . xn][x1]. So
we can write R[x1, . . . , xn] ≡ R[xn] . . . [x1].

2.9 The primitive Euclidean Algorithm

In Z[x]

a = 4x2 + 12x + 8 = 4(x2 + 3x + 2)
b = 12x2 + 6x + 6 = 6(2x2 + x + 1)
gcd(a, b) = gcd(4, 6) · gcd(x2 + 3x + 2, 2x2 + x + 1)

Definition. 4 is the content of a, (x2 + 3x + 2) is the primitive part.

In Z[x, y] ≡ Z[y][x]

a = 6x2y − 6y3 = (6y)x2 − 6y3 = 6y(x2 − y2)
b = 9xy + 9y2 = (9y)x + 9y2 = 9y(x + y)
gcd(a, b) = gcd(9y, 6y) · gcd(x2 − y2, x + y) = 3y(x + y)

Let R be a UFD (gcds exist). Let a = anx
n + · · ·+ a1x + a0.

Definition. The content of a, denoted cont(a) is gcd(an, an−1, . . . , a0)

Definition. The primitve part of a, denoted pp(a) = a
cont(a)

.

10

Definition. We say a is primitive if cont(a) = a unit.

Lemma. gcd(a, b) = gcd(cont(a), cont(b)) · gcd(pp(a), pp(b))

content(a, x), content(a, x,′ p′), primpart(a, x), and primpart(a, x,′ c′) are
the maple commands to get the desired part(s).

Pseudo-Division in D[x], D an integral domain. Let a, b ∈ D[x], b 6= 0. In
general, he quotient and reaminder 6∈ D[x]. However, the fractions we obtain
are all powers of the leading coefficient of the divisor. So we can multiply
the expression by that power.

Theorem. Let a =
∑l aixi, b =

∑n bjx
j. There exist unique polynomials q̄, r̄

(called the pseudo quotient and pseudo remainder in D[x]) s.t. ma = bq̄ + r̄
where deg(r̄) < deg(b) and m = k(b)l−n+1

In maple prem(a, b, x), prem(a, b, x,′ m′,′ q′)

Lemma. Let a, b be non-zero primitive in D[x]. Let r̄, q̄ ∈ D[x] s.t. ma =
bq̄ + r̄ with deg(r̄) < deg(b). Then gcd(a, b) ≡ gcd(pp(r̄), b)

Proof. Let g = gcd(a, b), h = gcd(pp(r̄), b). We must show g|h and h|g.
g|a, g|b so g|r̄. Since a, b are primitive, g is also primitive and thus g|pp(r̄).
h|b, h|r̄ so h|ma. Again h is primitive, so h|a.

2.10 Algorithm - Primitive Euclidean Algorithm

Let a, b ∈ R[x1, x2, . . . , xn], R a UFD, a, b 6= 0. Output gcd(a, b). Needs no
factorization.

1) If n = 0 then output gcdR(a, b).
2) Write a, b ∈ R[x1, x2, . . . xn−1][xn].
3) c := gcd(cont(a), cont(b))
4) primitive polynomial pseudo-remainder sequence

r0 = a/cont(a)
r1 = b/cont(b)
k = 1
while(rk 6= 0) do

rk+1 = pp(prem(rk−1/rk))
k ← k + 1

end
output c ∗ rk−1

11

3 Normal Forms and Algebraic Representa-

tions

3.1 LEvels of Abstraction

• The object (mathematical) level.

D[x] an int. dom ⇒ +,−, ∗, a|b, =,
arithmetic in D and with monomials
other polynomial operations deg, lc, lt, prem

• The form (simplification) level

Z[x, y] distributed form 12x2y − 4xy − 9x + 3
recursive form (12y)x6x2 + (−4y − 9)x + 3
factored form (3x− 1)(4xy − 3)

Q(x) expanded form −x4

x3−1

factored form − 1x4(x− 1)−1(x2 + x + 1)−1

factored pf form − x +
1
3

x2+x+1
+

− 1
3

x−1

• Data structure level

3.2 Normal and Cannonical Forms

LEt E be a set with the relation a ≡ b ⇐⇒ a − b = 0. Then ≡ is an
equivalence relation on E. So it partitions E into equivalence classes.

For simplification we want a function f : E → E s.t.

1. f(a) ≡ a

2. f(a) is simpler than a.

Definition. A normal function f : E → E satisfies

• f(a) ≡ a

• if a ≡ 0 then f(a) = 0.

• f(f(a)) = f(a)

An element is in normal form if f(a) = a.

Definition. f : E → E is in cannonical form if a ≡ b⇒ f(a) = f(b).

12

Maple’s simplify function gives a normal form for Q(x). Factor gives a
cannonical form for Q(x). Expans does not give a normal form.

If a ≡ b to test if a ≡ b using a normal function, f : E → E we use
f(a− b) = 0.

How do we reprsent a formula on the computer?
Maple uses a sum of products representation.
Programming using the op/nops form model.
nops(a) = 3 because there are 3 operands.
op(0, a) = ‘ + ‘ if op(0,a) = ‘+‘ then . . .
op(1, a) = first term
If type(a, ‘ + ‘) then
b := op(1, a)3xy3

op(0, b) = ‘ ∗ ‘
c := op(3, b)
op(0, c) = ‘‘

integer rational numeric algebraic
fraction rational numeric algebraic
float numeric algebraic
symbol name algebraic
indexed name algebraic
‘+‘ algebraic
‘*‘ algebraic

‘̂‘ algebraic
function algebraic
set
list
‘=‘

Forward quotes represent unevaluated.

3.3 Data Structures for Polynomials

Consider the polynomial 3x3y + 5x2 − 7y4.

• Maple

SUM 7 · 3 · 5 · -7

PROD 5 · 3 · 1

NAME 3 x φ

In total this takes 18 words to store. This structure is

– distributed

13

– no monomial ordering

– sparse

– slow arithmetic

• Pari - designed for computational number theory

(3y + 5)x3 + (−7)y4

POLY · ·

2 x y

3 · φ φ ·

4 0 0 0 0 -7

1 5 3

– dense

– recursive

– variables out

– monomials implicit

– sorted

• Axiom

Distributed multivariate system.

• Spares Distributed Multivariate Polynomials Monagan and Pearce.

4 Chinese Remainder Theorem

4.1 Homomorphisms

Definition. Let R,S be two rings wth identity. A function φ : R → S is
called a homomorphism if

• φ(a + b) = φ(a) + φ(b)

• φ(ab) = φ(a)φ(b)

• φ(1) = 1

14

The homomorphisms for evaluating a polynomial and eonsidering the
elements mod n commute.

We can apply this to determining whether a matrix is singular. We select
randomly some values for the polynomial at random, and having a random
prime. We evaluate a few times and if we don’t get zero for one then it is
non-singular. If it is always zero then the matrix is likely singular.

4.2 The integer chinese remainder theorem

Given pairwise relatively prime integers m1, m2, . . . mn and integers u1, u2, . . . un,
find u ∈ Z such that u ≡ ui mod mi.

Theorem. There exists a unique solution to the congruences satisfying u <
m1m2 · · ·mn.

Proof. Uniqueness: Easy.
Existence: algorithmic.
We can find vis such that u =

∑
i vi

M
mi

mod M . This generates u = vi
M
mi

mod mi which is computationally intensive to solve.
Mixed Radix Represntation: We can find wis such that u = w0 +w1m1 +

w2m1m2 + · · ·wn−1m1m2 · · ·mn−1. We solve this reursively.

We prefer mixed-radix as it is easier to solve computationally.
In maple, chrem([u1, . . . , un], [m1, . . . ,mn]) will solve. Works on polyno-

mials as well.
Let a, b ∈ Z[x] and let c = ab. How fast can we compute c? Suppose

a =
∑n−1

i=0 aix
i, b =

∑n−1
i=0 bix

i. Assume each coefficient is < Bm.
We need n2 multiplications which take O(m2) time each. We could instead

do Karatsuba and get O(m1.585) for the multiplications. We could also do
Karatsuba on the polynomials and only use O(n1.585) multiplications.

Using the chinese remainder theorem we can do this in O(n2m + m2n).
Let φp : Z − Zp be φ(a) = a mod p. We can calculate φp(c) for many

primes and then combine using the chinese remainder theorem. Should we
use one large prime or many small primes? IF we use machine primes, then
arithmetic will be easy and use O(n2) machine instructions.

Definition. The height of a polynomial is the largest coefficient of the poly-
nomial.

a = 3x− 4, b = 6x + 5. height of c is at most 48, so we need a product of
primes that is at least 96. We choose 3,5,7.

15

φp(a) φp(b)
φ
p(c)

5 3x + 1 x 3x2 + x
7 3x + 3 6x + 5 4x2 + 5x + 1
3 2 2 4

c = 18x2 + 96x + 85 mod 105. So c = 18x2 − 9x− 30.
Analysis of the modular multiplication algorithm.
If we use machcine primes, how many primes do we need? If we assume

that the primes are at least B, then we need at most 2m primes.
The cost of calculating our polynomials mod p is 2nO(m)O(m) = O(nm2).

The cost of the multiplications in Zpi
is O(m)O(n2). The cost of the chinese

remainder theorem is (2n)O(m2) = O(nm2).
Let F be a field. Given n distinct points α1, αn ∈ F an values y1, y2, . . . yn ∈

F find a polynomial f(x) ∈ F [x] s.t. f(αi) = yi.

Theorem. There exists a unique polynomial with degree < n.

We can solve this by considering a general polynomial and using gaussian
elimination. This takes O(n3) time. To show uniqueness, we consider the
polynomial f − g which has n roots but is of degree at most n− 1.

Lagrange Interpolation. L(x) = (x − α1)(x − α2) · · · (x − αn). f(x) =
n∑

i=1

ai
L(x)
x−αi

. ai = yi

Li(αi)
.

Newton Interpolation. Let f(x) = b0+b1(x−α1)+b2(x−α1)(x−α2) · · ·+
bn−1(x− α1) · · · (x− αn−1). b0 = y1. b1 = y2−b0

α2−α1
.

Both algorithms require O(n2) arithmetic operations in the field. Newton
is a constant time faster than Lagrange and is easily extended to higher degree
polynomials.

In Maple, over Q, we use interp([α], [y], x). Interp will work over Zp.
When considering multivariate polynomials, we have the polynomial a(x)+

yb(x) + y2c(x) + · · · and we interpolate each polynomial seperately.
Evaluation of f(x) of degree ≤ n − 1 at x = α. f = a0 + a1x + · · · =

a0 + x(a1 + x(· · ·). Which takes O(n) mults and O(n) adds.

4.3 Fast Fourier Transform

Let a(x) =
∑

aix
i with ai ∈ F . How fast can we evaluate a(x) and interpo-

late a(x)?
We can write the polynomial as the vector [a0, a1, . . . , an]. We can also

store the polynomial as [a(1), a(2), . . . , a(n)] without loss of information. To
interpolate the points takes O(n2) time and to do the evaluations each take
O(n) time and we need n of them, so the time is also O(n2).

16

a(x) = [a0 + x2a2 + · · ·] + x[a1 + a3x
2 + · · ·]

a(x) = b(x2) + xc(x2)

We evaluate the polynomial at ±1,±2, . . . ,±n
2
. We can further break

this down.

a(x) = d(x4) + x2e(x4) + x[f(x4) + x2g(x4)

We can evalute this at ±1,±i,±2,±2i, . . . ,±n
4
,±n

4
i.

In general, we want n = 2k points such that ωn
i = 1.

Definition. An element is an nth root of unity if ωn = 1. ω is a primitive nth
root of unity if ωn = 1 and ωk 6= 1,∀k < n. If ω is primitive, {ω, ω2, . . . , ωn}
are called the fourier points.

Definition. If a(x) ∈ F [x] of degree < n, then [a(1), a(ω), . . . , a(ωn−1)] ∈ F n

is the Fourier Transform of a(x).

In Z13, 8 is a primitive 4th root of unity, so [1, 8, 12, 5] are fourier points.
Input n = 2k, a = [a0, a1, . . . , an−1] ∈ F n, ω ∈ F a primitive nth root of

unity.
Output [a(ω0), a(ω1), . . .] ∈ F n.
If n = 1 then output [a0].
Write a(x) = b(x2) + xc(x2)
b→ [10, 12, . . . an−2]
c→ [a1, a3, . . . an−1]
B → DFFT (n

2
, b, ω2)

C → DFFT (n
2
, c, ω2)

for i from 0 to n
2
− 1 do

Ai → Bi + ωiCi

Ai+n
2
→ Bi − ωiCi

4.4 The inverse Fourier Transform

Consider

V (ω) =
111 · · · 1

1ωω2 . . . ωn−1

1ω2ω4 . . . ω2(n−1)

V (ω)A = W = [a(1), a(ω). We get n2 multiplications in F to solve for
W .

Lemma. Vω · Vω−1 = nI

17

A = V −1
ω W = 1

n
Vω−1W = 1

n
DFFT (n, W, ω−1).

So we can compute the inverse in O(n log(n)) time as well.

4.5 FFT Multiplication

Given 2 polynomials a, b, we can multiply them by evaluating, multiplying
the results, and interpolating that. This takes O(n log(n)) time.

4.6 Computing primitive nth roots of finity

For reals, they don’t always exist. So we have to look over C. For Zp we can
do it when n|p− 1.

To compute over Z[x], we find a large prime p so that Zp has primitive
nth roots and do the computation over that field.

We don’t even need a field, we just need that inverses of the primitive
roots exist.

5 The Modular GCD algorithm

Let a =
∑n−1 aix

i, b =
∑n−1 bix

i. Assume all coefficients ahave length ≤ m.
We can multiply a · b in order O(n2m2) using the classical algorithm. By

using the GCD and the CRT, we can reduce this to O(mn2 + nm2).
How fast can we compute gcd(a, b) ∈ Z[x]? Primitve Euclidean algorithm

does O(n2) integer operations on integers of size m, cm, 2cm, 3cm, . . . (n −
1)cm. This actually takes O(n6) time to run.

5.1 Modular GCD Algorithm

Definition. Let g = gcd(a, b). ā = a/g.

Definition. A prime p is unlucky if gcd(φp(ā), φp(b̄)) 6= 1.

Definition. A prime is bad if p|lc(g).

Lemma. If φp(lc(a)) 6= 0 then deg(gp ≥ deg(g). Moreover, if def(gp) =
deg(g) hen φp(g) = ugp for some u ∈ Zp.

Proof. Lame.

18

5.2 The leading coefficient problem

We always get monic polynomials, so we are stuck with geting a monic gcd,
so we don’t get the correct answer.

If we knew the leading coefficient, we could multiply through by it. Since
we don’t, we can multiply through by the smaller of the leading coefficients,
since the leading coefficient must divide this. This means we have to have a
larger bound for our product of primes to be larger than.

γ = gcd(lc(a), lc(b))
G = 0
M = 1
Loop
Pick a new prime p. st. p 6 |lc(a). gp = gcd(φp(a), φp(b)).
If deg(gp) = 0 output 1.
gp : gp · γ mod p.
If G = 0 then G = gp, M = p.
elif deg(gp) > def(G) then do nothing
elif deg(gp) < deg(G) then G = gp, M = p.
else
Use CRT to find gcd mod M · p. If we get the same answer, do trial

division, if not, find another prime.

5.3 Running time of Modular GCD

Let a, b, c ∈ Z[x] − {0}, cont(a), cont(b) = 1, g = gcd(a, b). Let deg(a) =
n− 1, deg(b) = n− 1 |a|, |b| < Bm.

How many primes do we need? Assuming we get no unlucky primes.
|g| < 2n−2 min(|a|, |b|) < 2n−2Bm. γ = gcd(lc(a), lc(b)) < Bm

If we assume that all primes are between B and 2B then we need <
logB 2n−1B2m = (n− 1) logB(2) + 2m = O(m).

• Cost of calculating φp(a), φ(b)

O(m)2nO(m) = O(m2n)

• Cost of computing gcdφp(a), φp(b) using Euclid’s Algorithm

O(m)O(n2) = O(m2n)

• Cost of applying CRT

nO(m2) = O(nm2)

• Cost of pp(g)

n(O(m2) + O(m2)) = O(nm2)

19

• Trial Divisions

O(n2m2) but we can do it in O(n2m+m2n) using the modular division
algorithm.

So the total cost is O(m2n + n2m)
Running time of Euclids Algorithm.
To do division, we need at most n −m + 1 steps. This requires O((n −

m + 1)n) multiplications.
Euclidean algorithm steps
O(n−m + 1)m + m2). When m = n, we get n2.

6 The resultant

Let R be an integral domain, A, B ∈ R[x] of degree m, n > 0.
The resultant res(A, B) = an

m · bn
m

∏ ∏
(αi − βj).

Sylvester’s Matrix S(A, B) is the following:

a0 a1 . . . an 0
0 10 . . .
0 0 a0
...b0 b1 . . . bm 0
0 b0
...0 . . . b0 . . . bm

Theorem. det(S(A, B)) = res(A, B)

6.1 Project Info

???

7 Newton’s Iteration and the Hensel Costruc-

tion

7.1 p-adic representation

Theorem. Let u ∈ Z, p > 1. For 0 ≤ u ≤ pn, there exist unique integers
u0, u1, . . . , un−1 s.t. 0 ≤ ui ≤ p and u = u0 + u1p + . . . + un−1p

n−1

Proof. obvious.

20

What about negative numbers?

Theorem. Let u ∈ Z, p > 2, p odd. For −pn

2
< u < pn

2
there exist unique

integers ui s.t. −p
2
≤ ui

p
2

and u = uo + u1p + . . . + un−1p
n−1.

Application:
Multiply (3x2 + 2x + 1)(2x2 + 2x + 3) = 6x4 + 8x3 + 13x2 + 5x + 3.
Let x = 1000
3002001 · 2002003 = 6008013005003
So we can reduce polynomial multiplication to integer multiplication.
(3x− 3)(2x + 1) = −3− 3x + 6x2

2997 · 2001 = 5996997
In maple, genpoly(5996997, 1000, x) will spit out the polynomial.
Let a ∈ Z, a ≥ 0. Let u =

√
a. Is u ∈ Z? If u ∈ Z, how can we compute

it? For a to have a square root, it must have a square root modulo p for any
prime p.

Example: is
√

12312 ∈ Z? examining modulo 5 we get 2, which is a
non-residue.

7.2 Linear p-adic Newton Iteration

LEt a ∈ Z, a > 0, u =
√

a. Suppose u ∈ Z. Let f(x) = a − x2. To
compute u, we want to solve f(u) = 0. Let p be an odd prime and let
u = u0 + u1p + . . . + un−1p

n−1.
Let u(k) = u0 + u1p + . . . + uk−1p

k−1. So u ≡ u(k) mod pk.
Algorithm:

• Solve a− x2 ≡ 0 mod p for x = u0 (somehow).

• Given U (k) find u(k+1). For f(x) = a− x2.

f(uk + 1 = f(uk + ukp
k)

= a− [u(k) + ukp
k]2

= a− [u(k)]2 − 2u(k)ukp
k − u2

kp
2k

0 = f(u(k)) + f ′(u(k))ukp
k mod pk+1

0 = f(u(k))
pk + f ′(u(k))uk mod p

But modulo p, f ′(u(k)) = f ′(u0). So uk = −f(uk)
pk /f ′(u0) = f(uk)

pk /2u0.

Stop when pk > 2
√

a
Example
Find

√
49.

Let p = 5. 49 = 4 mod 5.e1 = f(u1) = 49− 4 = 45.
u1 = 45

5
/4 = 9/4 mod 5 = 1

21

7.3 p-adic representations

Let a(x) ∈ Z[x] and let u(x) = ±
√

a(x). Is u(x) ∈ Z[x]? If so, how do we
compute it?

a = x3 + 5 is not a perfect square because the degree is odd and the
trailing coefficient is not a perfect square.

We could instead plug in some values and interpolate. But we get two
possible square roots for each value and don’t know which go together.

So instead, we choose a big integer and plug it in. Then take the square
root of it and use that polynomial. But that might give a false positive.
So we need to be sure we choose a large enough evaluation point so that
the coefficients of the resulting polynomial can be properly captured by the
value.

Also, we could reduce the polynomial modulo a prime.
Let u ∈ Z, p an odd prime. If −pn

2
< u < pn

2
then ∃ unique ui ∈ Z

satisfying u = u0 + u1P + . . . + un−1p
n−1 and −p

2
< up

2
.

Suppose u(x) =
∑m

i=0 aix
i with coefficients less than |pn

2
, then there exists

unique uij ∈ Z such that u(x) =
∑m

i

∑n−1
j=0 uijp

jxi =
∑n−1

j=0

∑m
i=0 uijx

ipj.

Thus, u(x) = u0(x) + u1(x)p + . . . un−1(x)pn−1. If u(x) = 11x2 − 7x + 4
and p = 3

u0 = −x2 − x + 1, u1 = x2 + x + 1, u2 = x2 − x

7.4 Linear p-adic Newton Iteration

Given f(u) ∈ Z[x][u], eg. f(u) = a−u2 where a ∈ Z[x] and given uo ∈ Zp[x]
s.t. f(u0) ≡ 0 mod p, find ū ∈ Z[x] s.t. f(ū) = 0 ∈ Z[x].

Definition. We let u(k) = u0 + u1p + . . . uk−1p
k−1 is called a kth order

approximation to ū if f(u(k) ≡ 0 mod pk.

Theorem. If f(u) ∈ Z[x][u] then ∃g(u, v) ∈ Z[x][u, v] such that f(u + v) =
f(u) + f ′(u)v + g(u, v)v2.

Applying this to f(u(k+1)) yields:

f(uk+1) = f(uk + ukp
k)

= f(uk) + f ′(uk)ukp
k mod pk

⇒ p|f(uk)
pk + f ′(uk)uk

uk = −f(uk

pk
1

f ′(uk)
mod p

= −f(uk

pk
1

f ′(u0)

If f(u) = a(x)− u2, then f ′(u) = −2u

22

uk = a−[u(k)]2

pk /2u0

= ek

pk /2u0 mod p

Definition. uk = ek

pk /2u0 mod p is called the linear p−adic update.

Example: u =
√

a = 49x2 − 56x + 16 = ±(7x− 4)
Use p = 5.

u0 = 2x + 1
f ′(u) = −24

2u0 = −x + 2
e1 = a− u2

0

= 45x2 − 60x + 15
11

p
= 9x2 − 12x + 3

u1 = −x2−2x−2
−x+2

= x− 1 mod 5
u(2) = 2x + 1 + (x− 1) · 5

= 7x− 4

Theorem. Let D be an integral domain and let f ∈ D[u]. Then ∃g ∈
D[u, y] s.t. f(u + y) = f(u) + f ′(u) · y + g(u, y) · y2.

Proof.
f(u + y) = a0(u) + a1(u)y + g(u, y) · y2

y = 0⇒
f(u) = a0(u)

= d
dy

, y = 0⇒
df(u+y)

dy
= a1(u) + y · h(u, y)

f ′(u + y) = a1(u) + y · h(u, y)
f ′(u) = a1(u)

Theorem. Let D be an integral domain and f(u, v) ∈ D[u, v]. Then ∃g, h, i ∈
D[u, v, y, z] s.t. f(u+y, v+z) = f(u, v)+fu(u, v)·y+fv(u, v)·z+g(u, v, y, z)·
y2 + h(u, v, y, z) · z2 + i(u, v, y, z) · yz.

Proof. As in the previous case.

23

7.5 Hensel’s Lemma

Given f ∈ Z[x][u, v], solve f(u, v) = 0 for u, w ∈ Z[x].
This can be used for

• GCD a, b ∈ Z[x], g = gcd(a, b), a = gā, b = gb̄, then a− gā = 0

• Factoring a = p1p2 . . . pn ⇒ a− p1(p2 . . . pn) = 0.

1. Find u0, w0 ∈ Zp[x] s.t. f(u0, w0) ≡ 0 mod p

2. Given u(k), w(k), a solution modulo pk, we find a solution modulo pk+1.

Theorem. If f(u, w) ∈ Z[x][u.w],∃E, F, G ∈ Z[x][u, v] s.t. f(u(k)+ukp
k, w(k)+

wkp
k) = f(u(k), w(k))+fu(u

(k), w(k))ukp
k+fw(u(k), w(k))wkp

k+G(uk, wk)u2
kp

2k+
E(uk, wk)w2

kp
2k + F (uk, wk)ukwkp

2k.

Considering modulo pk+1, we find that fu(u0, w0 · uk + fv(u0, w0)wk ≡
f(uk,wk

pk

For f(u, w) = a − u · w, fu = −w, fw = −u. So we have the equation
ukw0 + wku0 ≡ − ek

pk mod p.

To solve this, we will require gcd(u0, w0) = 1.

Lemma. Let a(x) ∈ Z[x], p a prime,p 6 |lc(a). If u0, w0 have gcd 1, then forall
n, there exist un, wn such that unwn = a mod pn and un = u0 mod p, wn =
w0 mod p.

In our algorithm, we don’t necessarily get the proper factors. We must
multiply a by lc(a) and then take the primitive part of the resulting factors.

8 Polynomial Factorization

8.1 Kronecker’s Algorithm

To find quadratic factors, interpolate them with 3 points.
Consider a(0), a(1), a(2) and look at their factors. Some factor of these

must be for the desired polynomial. We try all combinations of them to see.

8.2 Squre free factorizarion

Definition. A polynomial a is square-free if a has no repeated factors.

Lemma. a is square free iff gcd(a, a′) = 1.

24

Proof. Easy

Algroithm Squarefree: Staring with a = f1f
2
2 · · · fn

n , output this.

1. If degree of polynomial is 1 or 0, then done.

2. If gcd(a, a′) = 1 then output a, otherwise ā = a
g

3. f1 = ā/ gcd(g, ā)

4. recursively find the other terms.

8.3 Factorization in Z[x]

Lemma. Provided p 6 |lc(a) then the number of factors of a over Zp[x] is at
least the number of factors of a over Z[x].

Belectamp-Hensel Procedure
We have two bad choices: Choose one large prime which has factorizing

in Zp[x] expensive, or choose many small primes which is also expensive.
Instead, we use log(degree) primes and choose the one with the fewest

factors mod p to reduce the number of combinations to consider.

8.4 Square-free polynomial factoring

To find linear factors modulo p we compute the gcd of a with xp − x.
To find higher degree terms, we take the gcd with xpk − x. However,

this gives very high degree polynomials and so doing the computations is not
feasible.

Distinct Degree Factorization Algorithm
Input: a ∈ Zp[x], deg(a) > 0, gcd(a, a′) = 1.
Output: g1, g2, . . . , gk and each gi is a product of irreducible factors of

degree i.

k ← 1
w ← x

whilek ≤ deg(a)
2

do
w ← rem(wp, a)
gk ← gcd(w − x, a)
a← a/gk

end
outputg1, g2, . . . gk

25

How do we compute rem(wp, a) in Zp[x]? For large p, r ← 1, for i =
1, 2, . . . p do r ← rem(wr, a).

We can speed up this implementation by using square and multiply in-
stead.

9 Finite Fields

Lemma. In GF (pk), αpk
= α.

Theorem. xpk
is the product of all monic irreducible polynomials of degree

d|k.

How do we split gk in Zp[x]? If m is irreducible of degree k, m|vpk − v

in Zp[x]. If p 6= z xpk
= x(xp−1) = x(x

p−1
2 − 1)(x

p−1
2 + 1). We compute

the gcd with each of these factors. The probabolity that we don’t split the
polynomial is at most 4

9
.

10 Polynomial Factorization

10.1 Computing square roots in Zp

To try and find the square root of a mod p, we see if the polynomial x2 − a
has linear factors. To do this we take the gcd with xp − x. If we get x2 − a
then we know it is a square. We can find the roots by finding the gcd with
(x + a)

p−1
2 − 1).

10.2 Resultant Calculus

Let A = Anx
n + . . . = an

∏
(x− αi).

res(A, B) = am
n · bn

m

∏∏
(αi − βj)

• res(c, B) = cm

• res(a, b) = (−1)nres(B, A)

• res(A, B) = ±bn
m

∏
A(βj)

• res(AC, B) = res(A, B) · res(A, C)

• res(cA, B) = cm · res(A, B)

26

• res(BQ + R,B) = bn−l
m res(R,B)

We can combine these into an algorithm for calculating the resultant of
two polynomials.

But we get fractions. So we should use the primitive Euclidean Algorithm.

11 Rational Function Integration

Given f(x) ∈ Q(x), calculate the antiderivative of f(x).

Theorem.
∫

1
x
6∈ Q(x)

Proof. Assume
∫

1
x
∈ Q(x) = p(x)

q(x)
. Applying the quotient rule, we find that

xn|q for some n. But this would tell us that x|p. So we have a contradiction.

It would be nice if we could compute the integral without using partial
fractions.

Theorem.
∫

P
Q

= A
B

+
∫

C
D

where B = gcd(Q,Q′), D = Q/B. If deg(A) <

deg(B) and deg(C) < deg(D) then A, C are unique.

11.1 Method 1 - Newton’s
P
Q

= A′

B
− B′A

B2 + CB

B|B′D, so let H = B′D
B

. So P = A′D − AH + CB.
We equate coefficients in xi and solve for A, C.

11.2 Method 2 - Hermite’s

Let Q = gk
kT . Solve σTq′k + τqg = P for σ, τ with deg(σ) < deg(gk).

P

Q
= σ

Tq′k
Q

+ τ
qk

Q
= σ

q′k
qk
k

+
tau

Tgk−1
k

integrating, we get∫
P
Q

= σ/(1−k)
+

∫ τ−Tσ′(1−k)

Tqk−1
k

.

Theorem. Let C, D ∈ k[x], deg(C) < deg(D), gcd(D, D′) = 1, lc(D) = 1.
Let R(z) = resx(C−ZD′, D) ∈ K[z]. Then

∫
C
D

= α1 ln(v1)+ · · ·+αk ln(vk),
where αi are the roots of R(z) and vi = gcd(C − αiD

′, D). Moreover, L =
K(α1, . . . , αk) is the smallest field extension of K in which we can write

∫
C
D

.

27

Lemma. αi = c(betai)/D
′(βi)

Consider R(z) = resx(C(x)− zD′(x), D(x)).

Lemma. x− βj|gcd(x(C)− αiD
′(x), D(x)) ⇐⇒ αj = αi

12 Risch Integration Algorithm

12.1 The Risch Structure Theorem

Let K be a field of constants, F0 = K(x) and Fn = F0(θ1, θ2, . . . , θn) where
θ′i 6= 0 and θi is either logarithmic, exponential, or algebraic over Fi−1. Let
f(x) ∈ Fn. To compute

∫
f(x)dx we want a representation for Fn s.t.

• θi 6∈ Fi−1

• n is as small as possible

Theorem. Let F be a differential field with algebraically closed constant
field K. Suppose f(x) ∈ F and

∫
f(x)dx ∈ G where G is an elementary

extension of F . Then ∃v0, v1, . . . , vm ∈ F and c1, . . . , cm ∈ K such that∫
f(x)dx = v0 + c1 log(v1) + . . . + cm log(vm)

12.2 Special case of one logarithmic extension

Suppose
∫

f(x) ∈ F (θ) where θ = log(u), u ∈ F, u′ 6= 0, θ 6∈ F . Then∫
f(x) = a(θ)

b(θ)
for some a, b ∈ F [θ] {0} with gcd(a, b) = 1 in F [θ] and lcθ(b) =

1.

12.3 The Risch Algorithm

Let Fn = K(x, θ1, . . . , θn) where K is a constant field, θi is an elementary
extesnion of Fi−1 and θ′i 6= 0. To integrate f(x) ∈ Fn the algorithm will need
to integrate functions in Fn−1 recursively. So the base of the recursion is
K(x).

Consider the integral ∫
1 + x log(x)

(1 + x)2 log(X)
dx

We have F = C(x)(θ1 = log(x)) and we must have

28

∫ 1+x log(x)
(1+x)2 log(X)

dx

= v0 +
∑

ci log(vi)
= a

b
+ c1 log(1 + x) + c2 log(log(x))

where vi ∈ F and ci ∈ C.

12.3.1 The Transcendental Case

θi = log(ui) or θi = ewi

12.4 The Logarithmic Extension subcase

Let f(x) = F (θ), θ = log(u), u ∈ F, θ 6∈ F, θ′ 6= 0 and F = K(x, . . .)∫
f(x) =

∫ a(θ)
b(θ)

=
∫

P + R
b∫

R
b

= A
B

+
∫

C
D∫ log3(x)+1

log2(x)
=

∫
log(x) + 1

log2(x)

12.4.1 Hermite Reduction∫
P
Q

where P, Q ∈ F [θ], θ = log(u) and degree P < degree Q.

Let Q be a square free factorization of Q in F [θ] (Q = q1q
2
2 · · ·)

Let T = Q
qk
k
.

Solve σq′kT + τqk = P for σ, τ ∈ F [θ] with degree σ < degree qk.∫
P

Q
=

∫
σq′k
qk
k

+
τ

Q/qk

= −σ/(k − 1)

qk−1
k

+

∫
σ′/(k − 1)T + τ

Q/qk∫
1

log2(x)
=

∫
1
θ2

Solve σ 1
x
1 + τθ = 1 to get σ = x, τ = 0.

So we have our integral is − x
log(x)

+
∫

1
log(x)

.

But we kind of cheated, since we need q′k, qk relatively prime when the
derivative is taken wrt x, but we only know that is is true wrt θ.

Theorem. If qk,
d
dθ

qk are relatively prime then qk,
d
dx

qk are relatively prime.

Theorem. Let R(z) = resθ(C − zD′, D) ∈ F (z) then∫
C
D

is elementary iff all roots of R(z) are constants.∫
C
D

dx =
∑

ci log(vi) where ci are the roots of the resultant and vi =
monic gcd(C − ciD

′, D) ∈ F [x].

29

12.4.2 The Polynomial Part∫
P (θ)dx, P ∈ F [θ], θ = log(u), u ∈ F, θ′ 6= 0
Let P =

∑
piθ

i. By Louisville’s Thm, if the integral is elementary (ie
computable) then

∫
P (θ) = v0(θ) +

∑
civiθ where vi ∈ F, ci ∈ K, v0(θ) ∈

F [θ].
We equate coefficients of θi.

pl = ql+1(l + 1)θ′ + q′l
pl−1 = lqlθ

′ + q′l−1
...
p1 = q1θ

′ + q′0
p0 = q1θ

′ + q′0 +
∑

L

We recursively compute
∫

pl. If
∫

pl is not elementary then
∫

P is not
elementary. If

∫
pl is elementary but contains log(v) ∈ F [θ] then

∫
P is not

elementary.

12.5 Expopnential Subcase

See text.

13 Exam

9:30 am on April 21st. 24 hour take home final.

30

