1 Posets and Extremal Set Theory

Definition. A partially ordered set, or a poset, consists of a set P (assumed
to be finite, but not required) and a relation < on P which satisfies:

reflexive Vo € Pr <=z
antisymmetric Vz,y € P (r<yandy<z)=z=y
transitive Vz,y,2 € P (r<yandy<z)=2z<z

Example

e P={a,b,cd}
{a<ab<bc<cd<da<bb<ca<cd<c}
***Combinatorics 1

e S={1,2,3}P=29X <Y <= XCVY
***Combinatorics 2

e S={1,2,... n}P=29X<Y <= XCY

Definition. If z <y and x # y then we write z < y

Definition. An element x € P is maximal if there does not exist y € P such
that y > x

Definition. An element z € P is minimal if there does not exist y € P such
that x >y

Definition. = and y are comparable if either x < y or y < x. Otherwise
they are incomparable.

Definition. A chain is a subset X C P such that for any pair =,y € P, x,y
are comparable.

Definition. A chain is a subset X C P such that for any pair z,y € P, x,y
are incomparable.

Theorem. If P is a poset with largest chain of size k then P can be parti-
tioned into k antichains.

Proof. We proceed by induction on k. Consider the set X of all maximal
elements. This is a an anti-chain. By induction P — X can be partitioned
into k — 1 antichains, so we're done. O



Theorem. If P is a poset with largest antichain of size k then P can be
partitioned into k chains.

Proof. We proceed by induction on |P|. Let X be a maximal chain in P. If
X = P we're done. If the largest antichain in P — X has size < k — 1 then
we win by induction. So WMA P — X has an antichain Y of size k.

We want to partition X into X*, X~ st. Vo € Xt Vy € Y,z £ v,
Vee X VyeYa #y.

Set Xt ={reX:z>yforsomeyecY} X =X—-XT .

For every x € X either x # y for every y € Y or z £ y for every y € Y.

We can partition the poset into things larger than Y and things smaller
than Y. We can apply induction to these two sets and win. O

Definition. For a poset P, the comparability digraph associated with P has
vertex set P and an edge (z,y) if x > y.

Definition. The height of a poset is the length of the longest chain.
Definition. the width of a poset is the size of the longest antichain.

Definition. If D is an acyclic digraph, the transitive closure of D is the
digraph formed by joining by an edge any two vertices that are joined by a
directed path.

Theorem. (Gallai-Roy-Vitauer) If D is a loopless digraph with longest di-
rected path of length k then D is (k + 1) colourable.

Theorem. (Gallai-Milgram) If D is a digraph then it has a collection of
a(D) directed paths with partition the vertex set.

Let Ly, Lo, ..., L,, be linear orders of €). Define a relation < on €2 by the
rule z <y if v <, y for every 1 <4 < m. It is easy to see that < is a partial
order.

If L is a linear order on 2, P is a partial order on €2 then LisalinearextensionofPisP C
L.

Observation: Every partial order is an intersection of linear extensions.

Proof. Suppose x,y are incomparable then there is a linear extension L,
with > y. Take the intersection of L,,, L, for all incomparable z,y. [

The dimension of a poset P is the minimum number of linear extenstions
with intersection equal to P.

Conjecture. For every non-linear poset P there exist incomparable x,y st
x>y in > % of all linear extensions L.
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Theorem. For every poset P, dim(P) < width(p).

Lemma. If C' is a chain in P then there exists a linear extension L of P
such that Vo € C,Vy & C,x > y if x,y are incomparable in P.

Proof. Let C' = {z1,...xp}x1 > 29+ > x,. Fori=2,...n,let 4, ={y e
Q/Cly > xjpyy 2 xi. B=Q/(CUAU---ay,) 0

Proof. (of Thm) Set k = width(P). Partition Q into k chains Cj, ..., Cy and
apply the Lemma to choose a linear extension L; of P for each chain C}.
Then Uy, = P

m

Theorem. Let G = (V, E) be a simple graph, P the associated poset. Then
dimension of P < 3 <= G is planar.

Proof. (=) Let Ly, Lo, L3 be linear extensions with L; U Ly U Ly = P. O

Let Q = {a,b,c,...,z} For i = 1,2,3, choose a;,b;,¢;,...2 € R st,
T Sy = T Y

x — (21,72, 23) is an embedding of 2 in R3. Proeject onto the hyperplane
H ={(a1,az,a3) : a; + as + a3 = 0} WMA  is embedded in H.

Show that the edges don’t cross (non-trivial)

(<) We may assume we have a triangulation. We can assume it has
a magic colouring, where each triangle has colours 1,2,3 in clockwise order
on the angles and each vertex has 1,2,3 appearing in clockwise order, with
repetition.

Definition. A vertex is type a for a cycle C' if C' seperates the labels o from
vertex a.

Claim: Every cycle has a vertex of type 1,2,3.

Proof. Suppose no type 1 vertex. Suppose a chord, contradiction. Suppose
an interior vertex, contradiction. Then C'is a triangulation.

Construct D; if there is a triangle containing z,y with 1 at the x angle,
then = > y. Extend to a linear order since this is acyclic (by claim). Extend
D; to linear order on V. Extend to linear order on V U E by placing each
edge above its largest endpoint. O

Theorem. (Sperner’s Theorem) If Ay, Ay, ... A, € {1,2,....,n} and a; ¢
Aj then m < (LZJ)'



Proof. Let a; = |A;|. Let C; be the set of all maximal chains in the poset
of subsets containing 4;. C; NC; = ¢ and |C;| = al(n —a)! > [5]!'[5]!. So
n! >3 |Cy| >m > [2]12]!

L]

Theorem. If Ay, As,... Ay, € {1,2,...,n} and A;NA; # ¢ thenm < (Zj)

Proof. Let F; = {i,1+1,...,i+k—1} At most k of the F;s can be A;s. For
any permutation m € S, let F' = w(F;). Any k element subset appears as
an F; in exactly nk!(n — k)! different permutations .

Then mnk!(n — k)! < kn!. Thus m < (Zj) O
Definition. The Kneser graph Kn(n,k) has vertex set of k—subsets of
{1,2,...,n} and two vertices are adjacent if the corresponding sets are dis-
joint.

Indpendence number of Kn(n, k) = (Zj)

2 Design Theory

Definition. An incidence structure is a triple (P, B,Z) where P are points,
B are blocks, I C P - B.

v is the number of points, b is the number of blocks, k size of the blocks,
every t element subset is in A blocks.

Definition. An incidence structure is simple if no two blocks are incident
with the same points.

For convenience, we treat blocks as subsets of points and say that a point
xr € B ablock is x, Binl.

Definition. An incidence structure is a linear space if |B| > 2 for every
B € Band Vr,y € \/,!EIB,x,y € B.

Theorem. If S is a linear space with at least 2 blocks then b > v.

Proof. Let r, be the number of blocks containing x. Let kg be the number of
points in B. We may assume b < v. Then we have v(b—1r,) < b(v — k) O

1 1
I = DI )

2EP beBa¢B

Definition. A ¢t — (v, k, \) design is an incidence structure on v vertices with
the following properties:



e Every block has size k.

e Every subset of ¢ points is contained in exactly A blocks.

This is also called a S\(¢, k,v)
Proposition. In at — (v, k,\) design, b(lz) = )\(:)

Proof. Each t points must occur in A blocks. There are (lt’) such sets. Each

k) such t—sets. O

block contains ( )

Definition. 2-designs are called Balanced Incomplete Block Designs (BIBDs)

Let P = E(K3). A subset B € P is ablock if it is one of K 4, K3UK>, Cy.
There are 10 edges, and each block has size 4. The possible three edge subsets
are K3, Ps, K13, Ky U P,. Each occurs in exactly one block, so we have a
S1(10,4, 3) design.

Let P = Z3. B = {{w,z,y,w} C Zy :w+2x+y+ 2z =0} There are
16 elements, each block has size 4, and for any three element subset, there
is a unique fourth element that forms a set with it. So we have a S(3,4, 16)
design. In fact, we can get an S(a,a+1, (a+1)?) design by this construction.

The Fano plane is an S(2,3,7) design. ***Combinatorics3

We can construct a bipartite graph with points on one side and blocks on
the other. This is called the Levi graph.

An incidence structure S = (P, L) is a projective plane if it satisfies:

e Every two distinct points lie on exactly one line
e Every two distinct lines intersect in exactly one point
e There are 4 points, not three of which lie on a line

e Every line has the same size

Theorem. If S = (P, L) is a projective plane, then there ezists a number n
called the order of S, such that

o Fvery point is inc with n 4+ 1 lines
o Fuvery line is inc with n 4+ 1 points
ev=n’+n+1

eb=n’+n+1



Proof. Consider a point x and a line [ not on that point. The number of
lines through x is the same as the number of points in [. O]

Corollary. Every projetive plane of order n is an S(2,n + 1,n* +n + 1)
design.

Definition. F' a fieled. PG(2, F') is the projective plane over F' where P is
the set of 1-dimensional subspaces of F, L are all 2-dimensional subspaces
of 3.

In fact the Fano Plane is PG(2,2). And PG(2, F,)isa S(2,q+1,¢*+q+1)
design.
An incidence structure with points and lines is an affine plane if

e For any two points there is a unique line containing them

e For any points z, line [ which does not contain x, then there exists a
unique line I" disjoint from [ containing .

e there exist three points not all on a line.

Two lines are parallel if their intersection is trivial.

Theorem. If S = (P, L) is an affien plane, then
e parallel 1s an equivalence relation

e There is a number n called the order of S st, every line has size n,
every point is on n + 1 lines, v =n? and b = n? + n.

Given a projective plane, we delete a line and all points on it to obtain
an affine plane. Given an affine plane, we add point such that each line in a
parallel class is incident to the same one and then add them all to new line.

Definition. Two triangles are perspective from x if the corresponding ver-
tices lie on lines with .

Definition. Two triangles are perspective from a line [ if the points of in-
tersection of [ with the extended sides of the triangles are the same.

Theorem. (Desorgues) in PG(2,F) If two triangles are perspective from a
point then they are perspective from a line.

Proof. We may assume a; =< 1,0,0 >,b; =< 0,1,0 >,¢; =< 0,0,1 >
v =< 1,1,1 >. Then ay =< a,1,1 >,by =< 1,3,1 >, c0 =< 1,1, >.
Consider the lines perpendicular to the each pair of aj,bs,c;. Show that
things work out. [



PG(n, F) consists of the 1,2, ..., n dimensional subspaces of F"!.

GL(n + 1,F) is the invertible (n + 1)z(n + 1) matrices over F. Let
H C GL(n + 1,F) be the subgroup of matrices which are multiples of .
Then H is the center of GL(n + 1, F).

PGL(n+1,F) = GL(n+1,F)/H

A projctive plane is Desarguesian if his Thm holds.

Theorem. A finite projective plane is Desarquesian <= it is isomorphic
to PG(2, F) for some finite field F'.

Theorem. A finite projective geometry is Desarguesian <= it is isomor-
phic to PG(n, F) for some finite field F.

Definition. If s,¢ are in a poset, the meet of a,b is the unique maximal
element between below a, b.

Definition. If s, ¢ are in a poset, the join of a, b is the unique minimal element
between above a, b.

Definition. A poset is a lattice if any two elements have both a meet and a
join.

Definition. A poset is ranked if we can assign to each element a rank such
that when a < b rank(a) < rank(b)

Definition. A ranked lattice is modular if Va, b rank(aUb) 4+ rank(aNb) =
rank(a) + rank(b).

Definition. A ranked lattice is atomic if it is equal to the join of all rank
one elements it dominates.

If your lattice is atomic, every element can be described as the join of
some subset of rank 1 elements.

Definition. A lattice of rank n + 1 is connected if no two elements each of
rank < n + 1 dominate all rank 1 elements.

Definition. A projective incidence geometry is a connected atomic modular
ranked lattice.

Theorem. FEvery Desarguesian projective incidence geometry is isomorphic
to PG(n, F) for some n > 2.

Theorem. FEvery projective incidence geometry of rank > 4 is Desarguesian.



Proof. Let ay,by,c1 as, b, co be triangles which are perspective from z. Let
P1:CL1\/bl\/Cl and PQZCLQ\/bQ\/CQ.

Consider P, # Py,. P,,Po CT=xVay, Vb Vec.

Let’s assume rank(P;) = rank(P) = 3,rank(T). Let L = P, A\ Ps.
a1 V by ANas V by is a point in Py, P, so is a point on L.

In the other case, we take a line through = and make a new triangle and
use the previous case. O

Construction: Let G be an abelian group of order n? and let Hy,... H,
be subgroups of order n who intersect trivially with each other and each has
size n. Let L be the set of all cosets of the form g + H;. We claim the sets
of L form an affine plane.

Construction: Let V' be a 2 dimensional vector space over F2. Note V' is
also a 4-dimensional vector space over Fy. Let Uy, ... Uy be the q dimensional
subspaces of V' considered as a vector space over Fi.

Let W, be a ¢ dimensional subspace over F,, which is not one of U;.

3 Designs

Proposition. If 0 < i < t, then the number of blocks containing a fized i

element subset of points is )\E,i:g .

t—1

Proof. Count the blocks in two ways. ]

Definition. The replication number is the number of blocks containing a
_ bk

given point. r = )\Z—j = >
Definition. If D = (P,B) is a t-design and I C P,|I| =i < t. D; =
(P—1,B—1:1C B). This gives a S\(t — ¢,k —i,v — i) design. This is the
derived design.
L A (YY)
Number of sets disjoint from a set of size j is T

k—t
If i + 7 <t then the number of blocks containing a given ¢ element set

v—i—j
and disjoint from a j-element set, is %
k—t
Definition. The residual design D’ is the set of all blocks not containing a

set, of size j.

Theorem. If A =1 then for any t—design that is not a t + 1-design we have
v>(t+ 1) (k—t+1).



Proof. We can find a t + 1 element set that is not contained in a block.
Each t—element subset is contained in a unique block. And the blocks must
be otherwise unique. Thus there are at least (t + 1)(k —t) + (t + 1) =
(t+1)(k —t+1) points O

Definition. If D = (P, B) is an incidence structure, the incidence matrix is
indexed by points on the rows and blocks on the columns. Call the matrix

N.

When ¢t = 2, we have NN7 with r along the diagonol and )\ elsewhere.

sI + tJ has spectrum {tv + s,5°7*}. So NNT has spectrum {v\ + r —
A(r =X vh+r — X =rk. Det(NNT) = rk(r — X\)""!. Since the
determinant is non-zero, b > v.

A design is called square if v = b (symmetric).

If we have a square 2-design then det(NNT) = det(N)?. r = k and so
r — A\ is a square.

Theorem. (Ray-Chandlar, Wilson) If P, B is a t — (v, k,\) design with t >
2s,v >k + s, then b > (;’)

Proof. Let N; be the matrix with ¢ element subsets indexing the rows and
the blocks indexing the columns. There is a 1 if that block contains that
subset.
Let W;; be the incidence matrix indexing the rows by ¢ element subsets
and the columns by all possible j element subsets. Then we claim that
S

NSNZ = Z bés—'WiZM/iS‘
=0

7

The EF entry of NyNI is the number of blocks containing £ U F which
is just bys_;. The EF entry of WIW;, is the number of i element subsets

containted in £ and F which is > 5, (}). O

2s—i \4

Theorem. Let v,k,\ € N satisfy A(v — 1) = k(k — 1) then a necessary
condition for the existence of a square 2 — (v, k, \) design is:

e k— \is a square if v is even.

o 22 = (k—\a?+ (—1)%1)\3;2 has a nontrivial integer solution if v is
odd.

Theorem. Fvery number can be written as the sum of 4 squares. A number
can be written as the sum of 2 squares iff all primes that divide it an odd
number of times are of the form 1 mod 4.



Proof. Suppose a design exists. Let N be the incidence matrix. Consider the
system Nv = L and look at the form L2+ L3+ --+L2. The coefficient of z;z;
is 2\ when @ # j and is k when i = j. So > L? = A(>_x;)* + (k — \) (O] 22).
Suppose v = 1mod4. We can chosoe ay, as, az, as s.t. k—\ = a?+a3+a3+as.
Then Y L = (3" a?)(O- 27) + A xi)%. We can multiply a;x four tuples of
z;s. So we get Y L? = > y? + (k— \)z? + A(D_ x;)?. For some reason we
can eliminate y; and Ly, yo and Lo etc, and we're left with where we want
to be. O
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