Domination in Plane Triangulations

Lino Demasi and Matt DeVos

2011/03/15



Plan

» Definitions and Examples
» Matheson and Tarjan's result

» Our new result



Definitions and Examples

» A plane triangulation is a graph embedded in the plane so
that all faces are triangles

» A plane near-triangulation is a graph embedded in the plane
so that at most one face is not a triangle

» A Dominating set in a graph G is a set X C V/(G) such that

for each vertex v € V/(g) either v € X or v has a neighbour in
X.
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can be divided into three sets, such that each set is a
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Matheson and Tarjan's Result

» Given a plane triangulation of a graph G, the vertices of G
can be divided into three sets, such that each set is a
dominating set.

» If we consider the smallest of these three sets, the size must
be at most Z, so every plane triangulation has a dominating
set of size at most g
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Matheson and Tarjan's Result

» Proof is by induction on the number of vertices in a near
triangulation. But we assume a stronger induction hypothesis
to make the induction work.

> Given a plane near-triangulation of the graph G, the vertices
of G can be divided into 3 sets so that each set is a
dominating set and the vertices on the infinite face induce a
proper colouring on that face.

» Consider first graphs that have a cut of size 1 or 2.



Matheson and Tarjan's Result

>
ORSiva~




Matheson and Tarjan's Result

>N
>N




Matheson and Tarjan's Result

Q o O o o
C O O O
Q A A o o)

|




Matheson and Tarjan's Result
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Matheson and Tarjan's Result

» In what ways can this result be improved upon?

» We can try to find more sets each of which dominate the
graph.

» We can try to find a larger constant k so that we can find a
dominating set of size .

> In both cases, it's not possible to get better than 4. If we take
a graph with m disjoint copies of K; and join them together
to make a plane triangulation, any dominating set has size at
least m.
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» Being able to find 4 disjoint dominating sets in every plane
triangulation would imply the 4 colour theorem.




Matheson and Tarjan's Result

AAAAA

» Being able to find 4 disjoint dominating sets in every plane
triangulation would imply the 4 colour theorem.

» Take a plane triangulation and put a vertex in each face
joined to the three vertices of that face. We get a colouring
such that each set is a dominating set. Each triangle of the
original graph would have different colours on the three
vertices, so we get a proper colouring with 4 colours.
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New Result

» Desired Theorem (D and DeVos): Every plane near
triangulation has a dominating set of size at most [%].
» Problem: The ceiling function doesn't lend itself nicely to

induction.
Solution: Replace ceiling with floor: Every plane near
triangulation has a dominating set of size at most | 5 |

» Problem: It's not true.
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New Result

» Theorem (D and DeVos): Every plane near-triangulation G
has a dominating set of size at most:

7f+2p+7Tno +5n1 +3m + 23+ A+2u  ¢c(G)

7 7
where f is the number of vertices that are forced to be in the
dominating set, p is the number of vertices that are
"predominated,” ng is the number of isolated vertices, ny is
the number of vertices of degree 1, ny is the number of
vertices of degree 2, n3 is the number of vertices of degree
> 3, p is the number of components isomorphic to
octohedron or octohedron™ and A is the number of blocks
isomorphic to some elements in a list of size 4.




New Result

» Vertices of degree 2 are a problem.
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» Vertices of degree 2 are a problem.

» Any graph of this type requires 3 vertices.



New Result

» The same problem arises for vertices of degree 1.
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» Any graph of this type requires 5 vertices.




New Result

7f+2p+7Tng+5n1 + 3ny + 2n3 + A + 24
7

> n3 is vertices of degree > 3
> ny is vertices of degree 2
> 1y is vertices of degree 1

> ng is vertices of degree 0
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> In order to facilitate induction we need to consider graphs
where some vertices on the infinite face are required (forced)
to be in the dominating set. We also need to consider that
some vertices are dominated by a vertex that is in a different
component (predominated).



New Result

> In order to facilitate induction we need to consider graphs
where some vertices on the infinite face are required (forced)
to be in the dominating set. We also need to consider that
some vertices are dominated by a vertex that is in a different
component (predominated).

7f+2p+7ng+5n1 +3n+2n3+ X+ 2u
7
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New Result

» Even with these vertex weightings, there are some graphs that
don't have a dominating set of the required size



New Result

» Even with these vertex weightings, there are some graphs that
don't have a dominating set of the required size

» Neither of these graphs has a dominating set consisting of
only a single vertex. Any minimum size dominating set
contains 2 vertices, but we are only allowed a set of size 17—2 for
this graph.



New Result

» Each of these graphs costs 1 more to dominate than is
allowed by the vertex cost formula.




New Result

7f+2p+Tng+5n1 +3m+2n3+ A+ 2u
7

» These cover the cost of components or blocks that do not
conform to the vertex cost formula.
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» Next we consider graphs that have a cut edge. Split the graph
into two pieces with one endpoint of the edge in each
component. We can bound the cost of the new graph that we
get from doing this. Depending on what the cost of each
piece is modulo 7 we can either force one end of the edge and
predominate the other, or we can leave both alone.



New Result

» So how do we actually use this for induction?
» Disconnected graphs just work.

» Next we consider graphs that have a cut edge. Split the graph
into two pieces with one endpoint of the edge in each
component. We can bound the cost of the new graph that we
get from doing this. Depending on what the cost of each
piece is modulo 7 we can either force one end of the edge and
predominate the other, or we can leave both alone.

> We can repeat for a cut vertex. The actions chosen for the
various values modulo 7 will change.
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» Depending on what each side is modulo 7 we do different
things. One of the things we may do is replace one side with a
vertex of degree 2.



New Result

» 2-separations are a bit harder to deal with.

» Depending on what each side is modulo 7 we do different
things. One of the things we may do is replace one side with a
vertex of degree 2.

> If one side is the wheel graph, then placing a degree 2 vertex
can create this, which causes problems with the induction.
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New Result

> We can reduce to graphs that are 3-connected except for
degree 2 vertices and wheels attached to the infinite face.

» Through case analysis we are able to reduce further to
3-connected.

» Once we're 3-connected, we start deleting edges. This allows
us to assume that at least every second vertex on the infinite
face has degree 3.
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neighbours, creating a degree 2 vertex in the process.



New Result

» We try to remove pieces from the graph in a cost-neutral way.

» The most common way to do this is to add a vertex to the
dominating set, then delete that vertex and 3 of its
neighbours, creating a degree 2 vertex in the process.

» The frequency with which we use this operation would make it
difficult to improve on the value 3.5 with this technique.



New Result

Tf+2p+T7ng+5n1 +3n0+2n3+ A+ 2u
7

> Any plane triangulation on more than 6 vertices has no
vertices of degree < 3 and is not one of our special graphs
that costs more.



New Result

Tf+2p+T7ng+5n1 +3n0+2n3+ A+ 2u
7

> Any plane triangulation on more than 6 vertices has no
vertices of degree < 3 and is not one of our special graphs
that costs more.

» All but 2 plane triangulations have dominating sets of size 3%.
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