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Definitions and Examples

I A plane triangulation is a graph embedded in the plane so
that all faces are triangles

I A plane near-triangulation is a graph embedded in the plane
so that at most one face is not a triangle

I A Dominating set in a graph G is a set X ⊆ V (G ) such that
for each vertex v ∈ V (g) either v ∈ X or v has a neighbour in
X .



Matheson and Tarjan’s Result

I Given a plane triangulation of a graph G , the vertices of G
can be divided into three sets, such that each set is a
dominating set.

I If we consider the smallest of these three sets, the size must
be at most n

3 , so every plane triangulation has a dominating
set of size at most n

3 .
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Matheson and Tarjan’s Result

I Proof is by induction on the number of vertices in a near
triangulation. But they assume a stronger induction
hypothesis to make the induction work.

I Given a plane near-triangulation of the graph G , the vertices
of G can be divided into 3 sets so that each set is a
dominating set and the vertices on the infinite face induce a
proper colouring on that face.



Matheson and Tarjan’s Result

I Proof is by induction on the number of vertices in a near
triangulation. But they assume a stronger induction
hypothesis to make the induction work.

I Given a plane near-triangulation of the graph G , the vertices
of G can be divided into 3 sets so that each set is a
dominating set and the vertices on the infinite face induce a
proper colouring on that face.



Matheson and Tarjan’s Result

I In what ways can this result be improved upon?

I We can try to find more sets each of which dominate the
graph.

I We can try to find a larger constant k so that we can find a
dominating set of size n

k .

I In both cases, it’s not possible to get better than 4. If we take
a graph with m disjoint copies of K4 and join them together
to make a plane triangulation, any dominating set has size at
least m.
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Matheson and Tarjan’s Result

I Being able to find 4 disjoint dominating sets in every plane
triangulation would imply the 4 colour theorem.

I Take a plane triangulation and put a vertex in each face
joined to the three vertices of that face. We get a colouring
such that each set is a dominating set. Each triangle of the
original graph would have different colours on the three
vertices, so we get a proper colouring with 4 colours.
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I Vertices of degree 2 are a problem.

I Any graph of this type requires n
3 vertices.
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New Result

I How do we actually prove the result inductively?

Eliminate small separations to make the graph 3-connected.

I Find a good vertex v to add to our dominating set. Remove
the v and some neighbours S from the graph. Find a
dominating set in G ′ = G − S − v by induction.

I Have to do this carefully, since when we remove things, we
could create many degree 2 vertices.

I Need that c(G ′) ≤ c(G )− 7
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New Result

I We always work on the infinite face of the graph to maintain
a near-triangulation.

I There are lots of different configurations the boundary can
have. How do we reduce the number of possibilities to make
checking them all reasonable?

I If two consecutive vertices on the boundary each have degree
at least 4, we can delete the edge between them.
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New Result

I Theorem (D and DeVos): Every plane near-triangulation G
has a dominating set of size at most:

7f + 2p + 7n0 + 5n1 + 3n2 + 2n3 + λ+ 2µ

7
=

c(G )

7

where f is the number of vertices that are forced to be in the
dominating set, p is the number of vertices that are
”predominated,” n0 is the number of isolated vertices, n1 is
the number of vertices of degree 1, n2 is the number of
vertices of degree 2, n3 is the number of vertices of degree
> 3, µ is the number of components isomorphic to
octohedron or octohedron− and λ is the number of blocks
from the list of size 4.



New Result

I When we have a triangulation that is not one of our special
graphs, this reduces to 2n

7 .

I Theorem (D and Devos): All but three plane triangulations
have dominating sets of size 2n
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Open Questions

I What about triangulations on other surfaces?

I What is we do not allow vertices of degree 3?

I Can we get a dominating set of size n
4?

I Can we get 4 dominating sets?
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