Graph Reductions and Transformations

Lino Demasi

2009/07/18

Plan

- 1. Basic Graph Definitions
- 2. Important Theorems
- 3. Reductions
- 4. Transformations
- 5. What I'm Trying To Do

Technical Definition:

▶ A graph consists of a set *V*, and a collection *E* of pairs of elements of *V*.

Technical Definition:

▶ A graph consists of a set *V*, and a collection *E* of pairs of elements of *V*.

What's really happening:

Dots called vertices joined by arcs called edges.

Technical Definition:

▶ A graph consists of a set *V*, and a collection *E* of pairs of elements of *V*.

What's really happening:

Dots called vertices joined by arcs called edges.

Technical Definition:

▶ A graph H is a minor of a graph G if H can be obtained from G by a series of edge deletions and contractions.

Technical Definition:

▶ A graph *H* is a minor of a graph *G* if *H* can be obtained from *G* by a series of edge deletions and contractions.

What's really happening:

▶ A graph H is a minor of a graph G if G looks like H from far away.

Technical Definition:

► A graph *H* is a minor of a graph *G* if *H* can be obtained from *G* by a series of edge deletions and contractions.

What's really happening:

▶ A graph H is a minor of a graph G if G looks like H from far away.

Technical Definition:

► A graph is planar if it can be drawn in the plane with no two edges crossing.

Technical Definition:

▶ A graph is planar if it can be drawn in the plane with no two edges crossing.

What's really happening:

► A graph is planar if it can be drawn in the plane with no two edges crossing.

Technical Definition:

► A graph is planar if it can be drawn in the plane with no two edges crossing.

What's really happening:

► A graph is planar if it can be drawn in the plane with no two edges crossing.

Graph Minors Theorem:

▶ If you have a family F of graphs such that if a graph $G \in F$ then all minors of $G \in F$, then there exists a finite list of graphs L such that a graph H is in F iff H does not contain any graph of L as a minor.

Graph Minors Theorem:

▶ If you have a family F of graphs such that if a graph $G \in F$ then all minors of $G \in F$, then there exists a finite list of graphs L such that a graph H is in F iff H does not contain any graph of L as a minor.

What's really happening:

▶ If you have a nice family of graphs, then the boundary between your family and other graphs is finite.

Graph Minors Theorem:

▶ If you have a family F of graphs such that if a graph $G \in F$ then all minors of $G \in F$, then there exists a finite list of graphs L such that a graph H is in F iff H does not contain any graph of L as a minor.

What's really happening:

▶ If you have a nice family of graphs, then the boundary between your family and other graphs is finite.

Kuratowksi's Theorem:

▶ A graph is planar iff it does not have K_5 or $K_{3,3}$ as a minor.

 $Pink = all\ graphs$ $Green = our\ family$ $Blue = boundary\ set$ $Orange = graphs\ wearing\ pants$

The idea of reductions comes from the study of reistance on an electrical network.

The idea of reductions comes from the study of reistance on an electrical network.

Useless Reductions

- ▶ If a vertex has only a single edge, we can delete that vertex and that edge.
- ▶ If an edge has both ends on the same vertex, we can delete that edge.

The idea of reductions comes from the study of reistance on an electrical network.

Useless Reductions

- ▶ If a vertex has only a single edge, we can delete that vertex and that edge.
- If an edge has both ends on the same vertex, we can delete that edge.

Series Reduction

▶ If a vertex has degree 2, we can delete that vertex and join its neighbours.

Series Reduction

▶ If a vertex has degree 2, we can delete that vertex and join its neighbours.

Parallel Reduction

▶ If two edges have the same endpoints we can delete one of the edges.

Parallel Reduction

▶ If two edges have the same endpoints we can delete one of the edges.

Delta-Wye Transformations:

▶ If we have three vertices that form a triangle, we delete the edges, and add a new vertex adjacent to each of those vertices.

Delta-Wye Transformations:

▶ If we have three vertices that form a triangle, we delete the edges, and add a new vertex adjacent to each of those vertices.

Wye-Delta Transformations:

▶ If we have a vertex with three edges coming out of it, we delete that vertex and join its neighbours to make a triangle.

Wye-Delta Transformations:

▶ If we have a vertex with three edges coming out of it, we delete that vertex and join its neighbours to make a triangle.

Question: What graphs can be reduced by these transformations to arrive at only isolated vertices?

Question: What graphs can be reduced by these transformations to arrive at only isolated vertices?

▶ Epifanov (1966) showed that all planar graphs are reducible.

- ▶ Epifanov (1966) showed that all planar graphs are reducible.
- ▶ Gitler (1991) showed that a planar graph plus a single vertex attached to 3 of the vertices is reducible.

- ▶ Epifanov (1966) showed that all planar graphs are reducible.
- ▶ Gitler (1991) showed that a planar graph plus a single vertex attached to 3 of the vertices is reducible.
- ► Truemper (1989) showed that the set of graphs that are reducible to isolated vertices is closed under taking minors.

- ▶ Epifanov (1966) showed that all planar graphs are reducible.
- ▶ Gitler (1991) showed that a planar graph plus a single vertex attached to 3 of the vertices is reducible.
- Truemper (1989) showed that the set of graphs that are reducible to isolated vertices is closed under taking minors.
- There must be a finite list of graphs that define the boundary between being reducible and not being reducible to isolated vertices.

- ▶ Epifanov (1966) showed that all planar graphs are reducible.
- ▶ Gitler (1991) showed that a planar graph plus a single vertex attached to 3 of the vertices is reducible.
- ► Truemper (1989) showed that the set of graphs that are reducible to isolated vertices is closed under taking minors.
- There must be a finite list of graphs that define the boundary between being reducible and not being reducible to isolated vertices.
- ➤ Yu (2004,2006) found 68 billion graphs in the boundary set. They fall into 20 families.

► All known graphs in the boundary set are planar plus one or two vertices.

- All known graphs in the boundary set are planar plus one or two vertices.
- ▶ I am trying to systematically go through and find all graphs in the boundary set that are planar plus a vertex.

- All known graphs in the boundary set are planar plus one or two vertices.
- ▶ I am trying to systematically go through and find all graphs in the boundary set that are planar plus a vertex.
- ▶ Doing this by considering how many neighbours the extra vertex has, and assuming that the planar graph is a grid.

The following graph can not be reduced to isolated vertices:

The following graph can not be reduced to isolated vertices:

The red vertices indicate where the extra vertex is attached to.

The following graph can be reduced to isolated vertices:

The following graph can be reduced to isolated vertices:

So what have I actually found out?

So what have I actually found out?

So far nothing new. Everything I have found that is not reducbile contains one of the graphs given by Yu as a minor.

So what have I actually found out?

- ▶ So far nothing new. Everything I have found that is not reducbile contains one of the graphs given by Yu as a minor.
- ▶ It is okay if I don't find more minors, and simply show that the existing list is complete.

Where do I go from here?

Where do I go from here?

▶ The examination and classification work will take a long time.

Where do I go from here?

- ▶ The examination and classification work will take a long time.
- ► There is a termination condition, since if I get to far away from planar, then the graph must not be reducible.

Where do I go from here?

- ▶ The examination and classification work will take a long time.
- ► There is a termination condition, since if I get to far away from planar, then the graph must not be reducible.
- Determining whether I've found a graph in Yu's list is not necessarily easy, so it would be nice to find a way to check this efficiently.

End Credits

fin