Research Notes - d-regular Vertex Transitive Graphs

Lino Demasi

2009/01/15

For $A \subset V(G)$,

Definition. $\partial A = \{N(A) - A\}$

Definition. $\delta A = \{e = uv, u \in \partial A, v \in A\}$

Definition. diam $(A) := \max\{ \text{dist}_G(u, v) | u, v \in A \}$

Definition. depth(A) := $\max\{\operatorname{dist}_G(\partial A, v)|v \in A\}$

Lemma. $diam(A) < |\partial A|(2depth(A) + 1)$

Proof. Order elements of the boundary set. Path of length at most 2depth(A) in each, plus moving between.

Definition. A block of imprimitivity is a set $B \in \Omega$ s.t. $B^g = B$ or $B^g \cap B = \phi$ for all group actions g.

Definition. The collection of sets is called a system of imprivity.

Theorem. (Mader) If G is finite, vertex transive, d-regular then G is d-edge connected.

Proof. Suppose for contradiction that $|\delta(A)| < d$ and choose a set A that is minimal with this property. Clearly $|A| \leq \frac{|V|}{2}$.

For any graph and for sets $A, B \subset V$, we have the submodularity property

$$|\delta(A)| + |\delta(B)| \ge |\delta(A \cup B)| + |\delta(a \cap B)|$$

If A is not a block of imprimitivity then it contradicts submodularity.

If A is such a block, then each vertex has s neighbours internal to the block and d-s neighbours external to the block. $(s+1)(d-s) \ge d$, which is a contradiction.