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1 Hailton Cycle Space

Definition. The cycle space of G is the set CS(G) = {C1ACA --- AC, :
C; € C(G)} where C(Q) is the set of cycles of a graph and A is the symmetric
difference.

Definition. The cycle space of G is the set HS(G) = {C1ACA --- AC, :
C; € C(G)} where C(G) is the set of Hamilton cycles of a graph and A is
the symmetric difference.

For which graphs is HS(G) = CS(G)?

Consider graphs of the form (), x K. These graphs are two cycles joined
linearly by a perfect matching. There are two types of Hamilton Cycles in
these graphs. First, we have a cyle which uses a consecutive pair of matching
edges and n — 1 arcs along each cycle. These exist for all values of n. Second,
we have cycles that use all the matching edges and alternating cycle edges
on each side. These exist only for n even.

For n even, if we take the symmetric difference of n — 1 of the first type
of cycle we will get a 4-cycle. If we combine a cycle of the second type with
every alternating 4-cycle, we get one of the n cycles. This gives us all cycles
in the generating set for the C'S(G), since the faces generate this set. Thus
HS(G)=CS(G).

For n odd, we cannot get the 4-cycle by the same construction. In fact,
all of our generating cycles have an even number of arcs on each of the cycles,
so any symetric difference of them must also have this property. Thus, we
cannot get 4-cycles and we cannot get either of the n—cycles. We are able
to get 6—cycles.

Consider complete bipartite graphs K,,, n. For n > 2 this graph is Hamil-
tonian. Consider 1,3 and 2,4 on opposite sides of the bipartition. Then we
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can take cycles P,x,1,2,3,4,y, P,x,1,4,3,2,y, where x is on the same side
as 2,4, y is on the same side as 1,3, and P is a Hamilton path that uses the
remaining vertices. The symmetric difference of these cycles is 4,1, 2, 3,4,
which is a 4—cycle. From these cycles we are able to get all cycles.

2 Colour Switching

Given a graph G and a proper k—colouring, is it possible to convert this to
a different proper k—colouring by a sequence of vertex colour changes where
each intermediate colouring is also proper?

For infinite trees, we require § + 2 colours. During the talk, we said we
need A + 2, but an inductive type argument will work for 0 + 2. If we only
allow 0 + 1, then we can construct a § + 1 regular graph which is frozen.
That is, every vertex has every other colour appearing on its neighbour set,
so cannot be changed.

For finite trees however, we need only 3 colours. If we consider a leaf
node, then we can remove it and colour the rest by induction. Whenever
we need to alter the colour of the vertex the leaf was joined to, if it has the
colour 1 and wants to be coloured with the colour of the leaf (say 2), then
we give the leaf colour 3.

For any planar graph, a similar argument works with 7 colours since we
must have a vertex of degree at most 5. There exist frozen colourings for
5—regular planar graphs with 6-colours.



